Suche
Kontakt
>
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Grundbegriffe der Wahrscheinlichkeits­rechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung! | Statistik verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Ein Teilgebiet der Mathematik ist die Stochastik. Du wirst diesen Begriff eher als Wahrscheinlichkeitsrechnung oder Wahrscheinlichkeitsberechnung kennenlernen. Wenn du dich in Mathe mit Wahrscheinlichkeitsrechnung beschäftigst, begegnest du sicher oft der Frage, wie wahrscheinlich das Eintreffen bestimmter Ereignisse ist. Ein zentraler Bestandteil dieser mathematischen Disziplin ist der Umgang mit Prozentangaben. Hinzu kommen einige neue Grundbegriffe, die wir im Folgenden besprechen werden.

Ergebnis und Ereignis

Das Ergebnis und das Ereignis werden in der Wahrscheinlichkeitsrechnung oft miteinander verwechselt. Daher ist es wichtig, den genauen Unterschied zwischen diesen beiden Begriffen zu kennen. Um diesen Unterschied besser zu verstehen, nutzen wir als Beispiel das Werfen eines Würfels.

Ein aufgeklappter Würfel mit sechs möglichen Seiten
Abbildung: das Netz eines Würfels

Der Wurf des Würfels kann zu 6 möglichen Ausgängen führen. Jeder einzelne dieser Ausgänge stellt ein Ergebnis dar. Diese 6 möglichen Ergebnisse (1, 2, 3, 4, 5 und 6) fasst man in der Stochastik zusammen zur Ergebnismenge.

Beispiel

Ergebnismenge (einmaliges Würfeln): Ω = {1; 2; 3; 4; 5; 6}

Das Ergebnis leitet sich also vom Versuchsgegenstand, in diesem Fall dem Würfel, ab und hat noch nichts damit zu tun, wie wahrscheinlich etwa das Würfeln einer bestimmten Zahl ist. Egal welches Zufallsexperiment wir mit diesem Würfel durchführen - die Ergebnismenge bleibt immer gleich.

Ein Ereignis ist eine Teilmenge der Ergebnismenge. Ein Ereignis kann aus einem einzelnen Ergebnis oder aus mehreren Ergebnissen bestehen. Je nachdem was wir untersuchen, ändert sich also das Ereignis, auch wenn der Gegenstand der Untersuchung (Würfel) gleich bleibt.

Die Wahrscheinlichkeit für das Eintreten eines bestimmten Ereignisses kürzt man wie folgt ab: $P\ (E)$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Wahrscheinlichkeitsrechnung - Beispiele

Im Lernvideo haben wir dir bereits einen kleinen Einblick in die Wahrscheinlichkeitsrechnung gegeben. Im Folgenden findest du zwei weitere Beispiele zu Wahrscheinlichkeiten beim Würfeln, die wir dir schriftlich vorrechnen:

Beispiel 1

Beispiel

Ereignis: Wie wahrscheinlich ist es, eine $3$ zu würfeln?

Ereignismenge: $E = \{3\}$

Wahrscheinlichkeit: $P(E) = P(3) = \frac{1}{6}$

Beispiel 2

Beispiel

 

Ein Ereignis kann auch aus mehreren Ergebnissen bestehen: Wie wahrscheinlich ist es, eine $2$ oder eine $3$ zu würfeln?

Ereignismenge: $E = \{2; 3\}$

Wahrscheinlichkeit: $P(E) = \frac{2}{6} = \frac{1}{3}$

Es gibt natürlich auch die Möglichkeit, dass Ergebnismenge und Ereignismenge übereinstimmen. In unserem Beispiel wäre dies das Ereignis: Wie wahrscheinlich ist es, eine 1, 2, 3, 4, 5 oder 6 zu würfeln? Da dieses Ereignis alle Ergebnisse beinhaltet, die eintreffen können, nennt man es auch das sichere Ereignis.

Merke

  • Die Ergebnismenge enthält alle Ergebnisse, die eintreten können.
  • Ein Ereignis besteht aus Elementen der Ergebnismenge. Das heißt, ein Ereignis ist eine Teilmenge der Ergebnismenge.
  • Wenn ein Ereignis alle Elemente der Ergebnismenge beinhaltet, bezeichnet man das Ereignis als sicheres Ereignis. Ergebnismenge und Ereignismenge sind dann identisch.

Umgang mit Wahrscheinlichkeiten

Für einen sicheren Umgang mit Wahrscheinlichkeiten in Mathe sind Kenntnisse im Bereich der Prozentrechnung sehr wichtig. Du solltest den Zusammenhang von Dezimalzahlen und Prozentangaben verstanden haben und in der Lage sein, Brüche in Dezimalzahlen und in Prozentangaben umzurechnen, und umgekehrt.

Prozente lassen sich als Dezimalzahlen schreiben
Prozente und Dezimalzahlen

Die Wahrscheinlichkeit beim einmaligen Werfen eine bestimmte Zahl zu würfeln, ist für jede Zahl gleich und berechnet sich über den relativen Anteil (die relative Häufigkeit):

$relativer\ Anteil = \frac{Anteil(e)}{Ganze} = \frac {1}{6} ~\approx ~0,17 ~ \widehat{=}~16~\%$

Wenn du dich in diesem Bereich noch nicht fit fühlst, solltest du dich noch einmal mit unserem Lerntext zu diesem Thema beschäftigen.

Gegenereignis

Ein Gegenereignis enthält alle Ergebnisse, die nicht zum Ereignis zählen. Gegenereignis und Ereignis sind also zusammengenommen dasselbe wie die Ergebnismenge, nämlich alle Ergebnisse, die überhaupt eintreten können. Viel wichtiger als dieser Zusammenhang ist aber, dass die Summe der Wahrscheinlichkeiten von Ereignis und Gegenereignis immer 1 bzw.  100 % ergeben muss.

Beispiel

Die Wahrscheinlichkeit eine 1 zu Würfeln beträgt $\frac{1}{6}$.

Das Gegenereignis $\overline {E}$ deckt nun alle anderen Ergebnisse ab, die nicht zum Ereignis $E$ gehören; also, das Würfeln einer 2, 3, 4, 5 oder 6.

Da die Summe von Ereignis und Gegenereignis immer 1 ergeben muss, können wir die Wahrscheinlichkeit des Gegenereignisses berechnen:

$P (\overline {E}) = 1 - P (E) = 1 - \frac {1}{6} = \frac {5}{6} \approx 0,83 ~\widehat{=} ~83~\%$

In den Übungsaufgaben kannst du jetzt dein Wissen über die Wahrscheinlichkeitsrechnung testen. Viel Erfolg dabei!

 

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Du würfelst einmal und betrachtest das Ereignis "eine 2 oder eine 4 würfeln".

Wie lautet das Gegenereignis $\overline{E}$?

Teste dein Wissen!

Du ziehst aus einem Behälter mit einer weißen, einer blauen und einer roten Kugel eine Kugel heraus.

Wie lautet die Ergebnismenge Ω dieses Zufallsversuches?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Du ziehst aus einem Behälter mit einer weißen, einer blauen und einer roten Kugel eine Kugel heraus.

Wie lautet die Ereignismenge E zu dem Ereignis "eine rote Kugel ziehen"?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Stimmen Ergebnismenge und Ereignis überein, redet man von einem...

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

11.06.2024 , von Nadine D.
Unsere Tochter hat ihre Note innerhalb eines halben Jahres um zwei Noten verbessert. Nun können wir flexibel ein weiteres Fach dazu wählen. Das Ergebnis passt und die Flexibilität sorgt dafür, dass der Vertrag über zwei Jahre optimal genutzt werden kann. Absolute Weiterempfehlung!
11.06.2024 , von Laura O.
Die Nachhilfe ist sehr gut. Es sind schon Verbesserungen zu sehen. Insgesamt finde ich die Nachhilfestunden etwas zu teuer.
10.06.2024 , von Dajana M.
Die Noten haben sich gut verbessert. Es wird individuell aufs Kind und dessen Schwerpunkte eingegangen. Sehr freundliche Nachhilfelehrer die ihren Job ernst nehmen. Sehr empfehlenswert.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8610