Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Kombinatorik: Formeln, Beispiele, Aufgaben

Inhaltsverzeichnis:

In Mathe in der Kombinatorik, einem Teilgebiet der Stochastik, geht es um die Bestimmung der Anzahl möglicher Anordnungen oder Auswahlen von Objekten.

Je nachdem, ob man unterschiedliche Anordnungen, Auswahlmöglichkeiten oder beides berechnen möchte, gibt es verschiedene Rechenoperationen. Um zu entscheiden, welche Berechnung man für eine bestimmte Aufgabe benötigt, hilft folgender Entscheidungsbaum:

Entscheidungsbaum Kombinatorik
Entscheidungsbaum Kombinatorik

Im Folgenden gehen wir die verschieden Berechnungsmöglichkeiten durch und zeigen dir die Varianten der Kombinatorik an verschiedenen Beispielen und Aufgaben.

1. Möglichkeit: Es wird keine Auswahl getroffen

Zunächst müssen wir uns fragen, ob in der Aufgabenstellung von einer Auswahl an Objekten die Rede ist oder die Gesamtmenge der Objekte gemeint ist (= keine Auswahl).

Wird keine Auswahl getroffen, so berechnen wir die verschiedenen Anordnungsmöglichkeiten der Objekte mithilfe der Permutation. Dabei unterschiedet man eine Menge an Objekten, die alle unterscheidbar sind (= Permutation ohne Wiederholung) und eine Menge an Objekten, die teilweise nicht voneinander zu unterscheiden sind (= Permutation mit Wiederholung).

Permutation ohne Wiederholung

Merke

Merke

Hier klicken zum Ausklappen

Um die Anzahl verschiedener Kombinationsmöglichkeiten von $n$ unterscheidbaren Objekten zu berechnen, rechnet man:

$\Large{n!}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einer Urne befinden sich sechs verschiedenfarbige Kugeln. Wie viele Möglichkeiten gibt es, die Kugeln in einer Reihe anzuordnen?

$n~=~6$

$n!~=~1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6~=~720$

Es gibt insgesamt 720 Möglichkeiten.

Permutation mit Wiederholung

Merke

Merke

Hier klicken zum Ausklappen

Die Anzahl der Kombinationsmöglichkeiten von $n$ Objekten, von denen $k$ Objekte identisch sind, berechnet sich durch:

$\Large{\frac{n!}{k!}}$

Sind mehrere Objekte identisch, gilt:

$\Large{\frac{n!}{k_1! \cdot k_2!...}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einer Urne befinden sich drei grüne und zwei gelbe Kugeln. Wie viele Möglichkeiten gibt es, die Kugeln in einer Reihe zu ordnen?

$\Large{\frac{n!}{k!}~=~\frac{5!}{3! \cdot 2!}~=~\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1\cdot 2 \cdot 3) \cdot (1\cdot 2)}~=~\frac{120}{12}~=~10}$

Es gibt $10$ Möglichkeiten.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

2. Möglichkeit: Es wird eine Auswahl getroffen

Wird eine Auswahl von Objekten aus einer Gesamtmenge getroffen, berechnen wir die Kombination oder die Variation. Die Permutation hilft uns in diesem Fall nicht weiter.

Die Kombination gibt die Anzahl der Möglichkeiten an, eine bestimmte Menge an Objekten aus einer größeren Gesamtmenge auszuwählen.

Die Variation gibt an, wie viele Möglichkeiten existieren, eine bestimme Auswahl an Objekten zu ordnen. Die Variation berücksichtigt also zwei Dinge: Zum einen gibt es verschiedene Möglichkeiten, eine Auswahl zu treffen. Zum anderen kann diese Auswahl unterschiedlich geordnet werden.

Kombination ohne Wiederholung

Merke

Merke

Hier klicken zum Ausklappen

Um zu berechnen, wie viele Möglichkeiten es gibt, $k$ Objekte aus einer Gesamtmenge von $n$ Objekten auszuwählen, rechnet man:

$\Large{\binom{n}{k}}$

Gesprochen: "n über k"  oder  "k aus n"

Beispiel

Beispiel

Hier klicken zum Ausklappen

Beim Lotto werden sechs Zahlen aus insgesamt $49$ gewählt. Wie viele Möglichkeiten gibt es? Du kannst die Kombinationen so berechnen:

Anzahl der ausgewählten Objekte $k~=~6$

Anzahl der Gesamtmenge an Objekten $n~=~49$

Berechnung der Kombination: $\Large{\binom{n}{k}~=~ \binom{49}{6}}~=~13.983.816$

Es existieren 13.983.816 (fast 14 Millionen) Auswahlmöglichkeiten.

Kombination mit Wiederholung

Merke

Merke

Hier klicken zum Ausklappen

Um zu berechnen, wie viele Möglichkeiten es gibt $k$ Objekte aus einer Gesamtmenge von $n$ Objekten auszuwählen, wobei die Objekte mehrmals ausgewählt werden dürfen, rechnet man:

$\Large{\binom{n + k - 1}{k}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einem Gefäß befinden sich sechs verschiedenfarbige Kugeln. Es werden drei der Kugeln gezogen, wobei die gezogene Kugel nach jedem Zug wieder zurückgelegt wird (= mit Wiederholung).

Anzahl der ausgewählten Objekte $k~=~3$

Anzahl der Gesamtmenge an Objekten $n~=~6$

Berechnung der Kombination: $\Large{\binom{n + k - 1}{k}~=~ \binom{6 + 3 - 1}{3}~=~ \binom{8}{3}}~=~56$

Es existieren 56 Auswahlmöglichkeiten.

Variation ohne Wiederholung

Merke

Merke

Hier klicken zum Ausklappen

Um die Anzahl von Kombinationsmöglichkeiten einer Auswahl von $k$ Objekten von einer Gesamtanzahl an $n$ Objekten zu berechnen, benutzen wir folgende Formel:

$\Large {\frac{n!}{(n - k)!}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einer Kiste befinden sich sechs verschiedenfarbige Kugeln, von denen vier Kugeln gezogen werden. Wie viele Möglichkeiten gibt es, die Auswahl von vier Kugeln zu ordnen?

$\Large {\frac{n!}{(n - k)!} = \frac{6!}{(6 - 4)!} = \frac{6!}{2!}\frac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6}{1 \dot 2} = \frac{720}{2} = 360}$

Es gibt insgesamt also $360$ Möglichkeiten, vier Kugeln aus einer Menge von sechs Kugeln zu ziehen und diese in den unterschiedlichsten Kombinationen zu ordnen.

Variation mit Wiederholung

Merke

Merke

Hier klicken zum Ausklappen

Um die Variation mit Wiederholung einer Auswahl von $k$ Objekten von einer Gesamtzahl an $n$ Objekten zu berechnen, benötigt man diese Formel:

$\Large{n^k}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einer Kiste befinden sich sechs verschiedenfarbige Kugeln, von denen vier Kugeln gezogen werden. Nach jedem Ziehen wird die gezogene Kugel zurück in die Urne gelegt. Wie viele mögliche Kombinationen an gezogenen Kugeln gibt es? Berechne die Kombinationen.

Anzahl $n$ aller Objekte: $6$

Anzahl $k$ der ausgewählten Objekte: $4$

$\Large{n^k = 6^4 = 1296}$

Es gibt insgesamt also $1296$ Möglichkeiten, vier Kugeln aus einer Menge von sechs Kugeln mit Zurücklegen zu ziehen und diese in den unterschiedlichsten Kombinationen zu ordnen.

Nun kennst du in der Kombinatorik alle Formeln und kannst die Permutation, Kombination und Variation berechnen. Teste dein neu erlerntes Wissen zum Thema Kombinatorik mit unseren Übungsaufgaben zur Kombinatorik!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Worin liegt der Unterschied zwischen Variation und Permutation?

Teste dein Wissen!

In einer Kiste befinden sich vier verschiedenfarbige Kugeln, von denen zwei Kugeln gezogen werden. Nach dem Ziehen wird die gezogene Kugel wieder zurück in die Urne gelegt. Wie viele mögliche Kombinationen an gezogenen Kugeln gibt es?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In einer Urne befinden sich sieben Kugeln, aus denen drei ausgewählt werden sollen. Wie viele Möglichkeiten existieren, drei Kugeln aus sieben auszuwählen?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In einer Urne befinden sich zehn Kugeln, von denen drei rot und drei gelb sind. Die anderen Kugeln sind verschiedenfarbig. Wie viele Möglichkeiten gibt es, diese Kugeln in einer Reihe zu ordnen?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
anonymisiert, vom 2020-01-11
Sehr guter Service und sehr guter Lehrer
anonymisiert, vom 2020-01-10
Exzellente persönliche Betreuung. Es wird sich Zeit genommen für individuelle Probleme und diese werden kompetent gelöst. Das Lehrpersonal ist sehr erfahren und passt sich den jeweiligen Umständen sehr gut an. Ich kann den Studienkreis Wolfenbüttel uneingeschränkt weiterempfehlen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8607