Kombination mit Wiederholung - Übungen und Beispiele

Mathematik > Wahrscheinlichkeits­rechnung und Statistik
Kombination mit Wiederholung - Übungen und Beispiele! | Statistik verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit der Kombination. Die Kombination kommt aus dem Bereich der Kombinatorik und tritt in zwei Varianten auf: mit und ohne Wiederholung. In diesem Text geht es um die Kombination ohne Wiederholung

Was bedeutet Kombination?

Die Kombination gibt die Anzahl der Möglichkeiten an, eine bestimmte Menge an Objekten aus einer größeren Gesamtmenge auszuwählen. 

Beispiel

Die Kombination hilft beim Lösen folgenden Problems:

Aus einer Schülergruppe von insgesamt 30 Schüler und Schülerinnen sollen vier Personen ausgewählt werden. Wie viele mögliche 4er-Gruppen können ausgewählt werden?

Bei der Kombination werden die verschiedenen Auswahlmöglichkeiten für vier Schüler aus einer Gruppe von 30 beachtet. Was bei der Kombination nicht berücksichtigt wird, ist die Reihenfolge, in der man die ausgewählten Schüler ordnen könnte. 

Um die Kombination zu berechnen, benötigen wir zwei Größen: Die Gesamtanzahl $n$ der Objekte und die Anzahl $k$ der Objekte, die ausgewählt wurden.

Gut zu wissen

Es besteht eine Ähnlichkeit zwischen Kombination und Variation. Genauso wie die Kombination, beachtet die Variation die verschiedenen Auswahlmöglichkeiten. Zusätzlich berechnet man mithilfe der Variation auch noch die verschiedenen Möglichkeiten, die ausgewählten Objekte zu ordnen. Dies beachtet die Kombination nicht.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Kombination mit Wiederholung

Kombination mit Wiederholung bedeutet, dass Objekte mehrfach ausgewählt werden können.

Zur Berechnung der Kombination lösen den Term als Binomialkoeffizient. 

Merke

Kombination mit Wiederholung

Um die Anzahl der Möglichkeiten auszurechnen, $k$ Objekte aus einer Gesamtmenge von $n$ Objekten auswählen, wobei die Objekte mehrmals ausgewählt werden dürfen, rechnet man:

$\Large{\binom{n + k - 1}{k}}$

Methode

Wie rechnet man Binomialkoeffizienten mit dem Taschenrechner aus?

Beispiel: $\Large{\binom{5}{3}~=~10}$

Um solche Terme zu berechnen, benötigst du die nCr - Taste. Um den Beispielterm auszurechnen, gibst du folgendes in den Taschenrechner ein:

Eingabe: $~~5~~$ [nCr] $~~3~~$ [=]

Beispielaufgabe

Beispiel

In einem Gefäß befinden sich sechs verschiedenfarbige Kugeln. Es werden drei der Kugeln gezogen, wobei die gezogene Kugel nach jedem Zug wieder zurückgelegt wird (= mit Wiederholung).

Anzahl der ausgewählten Objekte $k~=~3$

Anzahl der Gesamtmenge an Objekten $n~=~6$

Berechnung der Kombination: $\Large{\binom{n + k - 1}{k}~=~ \binom{6 + 3 - 1}{3}~=~ \binom{8}{3}}~=~56$

Es existieren 56 Auswahlmöglichkeiten.

Teste dein neu erlerntes Wissen in unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

In einem Gefäß befinden sich elf verschiedenfarbige Kugeln. Es werden vier der Kugeln gezogen, wobei die gezogene Kugel nach jedem Zug wieder zurückgelegt wird.

Teste dein Wissen!

Berechne den Binomialkoeffizienten $\Large{\binom{19}{5}~=~}$ und markiere die richtige Lösung.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne den Binomialkoeffizienten $\Large{\binom{9}{6}~=~}$ und markiere die richtige Lösung.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lautet die Formel zur Berechnung der Kombination (mit Wiederholung)?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7895