Online Lernen | Mathematik Aufgaben | Wahrscheinlichkeitsrechnung und Statistik Kombinatorik Permutation mit Wiederholung berechnen

Permutation mit Wiederholung berechnen

Was ist eine Permutation?

Der Begriff Permutation kommt aus dem Bereich der Kombinatorik

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Permutation leitet sich aus dem Lateinischen ab und bedeutet so viel wie vertauschen.

Mithilfe der Permutation können wir berechnen, wie viele Möglichkeiten es gibt, verschiedene Objekte in eine Reihenfolge zu bringen bzw. zu kombinieren. Auf unserer Lernseite über Permutation kannst du dir die grundlegenden Regeln noch einmal ansehen.

Um herauszufinden, wie viele Kombinationsmöglichkeiten es gibt, müssen wir die Anzahl der Objekte, die kombiniert werden sollen, bestimmen. Von dieser Zahl rechnet man nun die sogenannte Fakultät aus.

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einer Urne befinden sich sechs verschiedenfarbige Kugeln. Wie viele Möglichkeiten gibt es, die Kugeln in einer Reihe anzuordnen?

$n~=~6$

$n!~=~1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6~=~720$

Es gibt insgesamt 720 Möglichkeiten.

Permutationen mit Wiederholung

Dieser einfache Rechenweg funktioniert allerdings nur, wenn es sich um unterschiedliche Objekte handelt. Für den Fall, dass zwei oder mehrere Objekte gleich sind, müssen wir eine andere Berechnung vornehmen.

Beispielsweise könnten die sechs Kugeln aus der Urne nicht alle eine unterschiedliche Farbe haben. Nehmen wir an, dass drei der sechs Kugeln rot sind. Die anderen drei Kugeln sind blau, grün und gelb. Dadurch, dass die Hälfte der Kugeln dieselbe Farbe haben, sinkt die Anzahl an Kombinationsmöglichkeiten verschiedenfarbiger Kugeln.

Um dennoch herauszufinden, wie viele Kombinationsmöglichkeiten existieren, berechnen wir zunächst alle Kombinationsmöglichkeiten, die möglich wären, wenn die sechs Kugeln verschiedenfarbig sind. Diese Zahl teilen wir nun durch das Produkt der Fakultäten der einzelnen Elemente. Was bedeutet in diesem Fall Elemente?

1. Element: drei rote Kugeln $(3!)$

2. Element: eine blaue Kugel $(1!)$

3. Element: eine grüne Kugel $(1!)$

4. Element: eine gelbe Kugel $(1!)$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\Large{\frac{6!}{3! \cdot 1! \cdot 1! \cdot 1!}~=~\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{(1\cdot 2 \cdot 3) \cdot (1) \cdot (1) \cdot (1)}~=~\frac{720}{6}~=~120}$

Es gibt also $120$ Möglichkeiten, die sechs Kugeln zu kombinieren. Wären alle Kugeln verschiedenfarbig gewesen, hätte es $720$ Möglichkeiten gegeben.

Elemente, die in der Reihe ohnehin nur einmal vorkommen, tauchen im Nenner mit $1!$ auf. Da $1!~=~1$ müssen wir diese nicht unbedingt mit aufschreiben. Es genügt die Fakultät derjenigen Elemente in den Nenner zu schreiben, die mehrmals vorhanden sind (in unserem Beispiel: $3!$).

Merke

Merke

Hier klicken zum Ausklappen

Die Anzahl der Permutationen von $n$ Objekten, von denen $k$ identisch sind, berechnet sich durch:

$\Large{\frac{n!}{k!}}$

Weitere Beispiele

Beispiel

Beispiel

Hier klicken zum Ausklappen

In einer Urne befinden sich drei grüne und zwei gelbe Kugeln. Wie viele Möglichkeiten gibt es, die Kugeln in einer Reihe zu ordnen?

$\Large{\frac{n!}{k!}~=~\frac{5!}{3! \cdot 2!}~=~\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1\cdot 2 \cdot 3) \cdot (1\cdot 2)}~=~\frac{120}{12}~=~10}$

Es gibt $10$ Möglichkeiten.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wie viele fünfstellige Ziffern gibt es, die dreimal die $3$ und zweimal die $4$ enthalten?

$\Large{\frac{n!}{k!}~=~\frac{5!}{3! \cdot 2!}~=~\frac{1\cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1\cdot 2 \cdot 3)\cdot (1\cdot 2)}~=~\frac{120}{12}~=~10}$

Es gibt $10$ Möglichkeiten.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7899