Suche
Kontakt
>
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Permutation mit Wiederholung berechnen

Permutation mit Wiederholung berechnen! | Statistik verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Was ist eine Permutation?

Der Begriff Permutation kommt aus dem Bereich der Kombinatorik

Gut zu wissen

Permutation leitet sich aus dem Lateinischen ab und bedeutet so viel wie vertauschen.

Mithilfe der Permutation können wir berechnen, wie viele Möglichkeiten es gibt, verschiedene Objekte in eine Reihenfolge zu bringen bzw. zu kombinieren. Auf unserer Lernseite über Permutation kannst du dir die grundlegenden Regeln noch einmal ansehen.

Um herauszufinden, wie viele Kombinationsmöglichkeiten es gibt, müssen wir die Anzahl der Objekte, die kombiniert werden sollen, bestimmen. Von dieser Zahl rechnet man nun die sogenannte Fakultät aus.

Beispiel

In einer Urne befinden sich sechs verschiedenfarbige Kugeln. Wie viele Möglichkeiten gibt es, die Kugeln in einer Reihe anzuordnen?

$n~=~6$

$n!~=~1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6~=~720$

Es gibt insgesamt 720 Möglichkeiten.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Permutationen mit Wiederholung

Dieser einfache Rechenweg funktioniert allerdings nur, wenn es sich um unterschiedliche Objekte handelt. Für den Fall, dass zwei oder mehrere Objekte gleich sind, müssen wir eine andere Berechnung vornehmen.

Beispielsweise könnten die sechs Kugeln aus der Urne nicht alle eine unterschiedliche Farbe haben. Nehmen wir an, dass drei der sechs Kugeln rot sind. Die anderen drei Kugeln sind blau, grün und gelb. Dadurch, dass die Hälfte der Kugeln dieselbe Farbe haben, sinkt die Anzahl an Kombinationsmöglichkeiten verschiedenfarbiger Kugeln.

Um dennoch herauszufinden, wie viele Kombinationsmöglichkeiten existieren, berechnen wir zunächst alle Kombinationsmöglichkeiten, die möglich wären, wenn die sechs Kugeln verschiedenfarbig sind. Diese Zahl teilen wir nun durch das Produkt der Fakultäten der einzelnen Elemente. Was bedeutet in diesem Fall Elemente?

1. Element: drei rote Kugeln $(3!)$

2. Element: eine blaue Kugel $(1!)$

3. Element: eine grüne Kugel $(1!)$

4. Element: eine gelbe Kugel $(1!)$

Beispiel

$\Large{\frac{6!}{3! \cdot 1! \cdot 1! \cdot 1!}~=~\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{(1\cdot 2 \cdot 3) \cdot (1) \cdot (1) \cdot (1)}~=~\frac{720}{6}~=~120}$

Es gibt also $120$ Möglichkeiten, die sechs Kugeln zu kombinieren. Wären alle Kugeln verschiedenfarbig gewesen, hätte es $720$ Möglichkeiten gegeben.

Elemente, die in der Reihe ohnehin nur einmal vorkommen, tauchen im Nenner mit $1!$ auf. Da $1!~=~1$ müssen wir diese nicht unbedingt mit aufschreiben. Es genügt die Fakultät derjenigen Elemente in den Nenner zu schreiben, die mehrmals vorhanden sind (in unserem Beispiel: $3!$).

Merke

Die Anzahl der Permutationen von $n$ Objekten, von denen $k$ identisch sind, berechnet sich durch:

$\Large{\frac{n!}{k!}}$

Weitere Beispiele

Beispiel

In einer Urne befinden sich drei grüne und zwei gelbe Kugeln. Wie viele Möglichkeiten gibt es, die Kugeln in einer Reihe zu ordnen?

$\Large{\frac{n!}{k!}~=~\frac{5!}{3! \cdot 2!}~=~\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1\cdot 2 \cdot 3) \cdot (1\cdot 2)}~=~\frac{120}{12}~=~10}$

Es gibt $10$ Möglichkeiten.

Beispiel

Wie viele fünfstellige Ziffern gibt es, die dreimal die $3$ und zweimal die $4$ enthalten?

$\Large{\frac{n!}{k!}~=~\frac{5!}{3! \cdot 2!}~=~\frac{1\cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1\cdot 2 \cdot 3)\cdot (1\cdot 2)}~=~\frac{120}{12}~=~10}$

Es gibt $10$ Möglichkeiten.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie viele mögliche vierziffrige Zahlen gibt es, in denen zweimal die $2$ und zweimal die $4$ vorkommt?

Teste dein Wissen!

In einer Urne befinden sich zehn Kugeln, von denen drei rot und drei gelb sind. Die anderen Kugeln sind verschiedenfarbig. Wie viele Möglichkeiten gibt es, diese Kugeln in einer Reihe zu ordnen?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In einer Urne befinden sich sechs Kugeln von denen zwei gelb sind. Die anderen vier Kugeln sind verschiedenfarbig. Wie viele Möglichkeiten gibt es, diese Kugeln in einer Reihe zu ordnen?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In einer Urne befinden sich vier verschiedenfarbige Kugeln. Wie viele Möglichkeiten gibt es, diese Kugeln in einer Reihe zu ordnen?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

15.04.2024 , von Esra Ö.
Sehr hilfsbereit und Hat meiner tochter in der schule sehr verbessern lassen Sehr nette lehrerinnen da sehr empfehlenswert alle immer am lächeln Dankeschön
13.04.2024 , von Jörg M.
Frau Schmidt macht einen tollen Job und fast alles möglich. Wir haben mittlerweile unser 2. Kind angemeldet. Studienkreis Lernförderung mit Erfolg
12.04.2024 , von Christian V.
Tolles Team und super gute Cheffin
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7899