Suche
Kontakt
>
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Schnittmenge und Vereinigungsmenge

Schnittmenge und Vereinigungsmenge berechnen! | Statistik verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Du kennst bereits Begriffe wie Ereignis und Gegenereignis. In diesem Lerntext führen wir zwei neue Begriffe ein, die dir in der Wahrscheinlichkeitsrechnung oft begegnen werden: Schnittmenge und Vereinigungsmenge. Im Gegensatz zum Ereignis/Gegenereignis wirst du auf den Durchschnitt bzw. die Vereinigung erst bei schwierigeren Zufallsversuchen stoßen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Die Schnittmenge

Ereignisse eines komplexen Zufallsversuchs können von mehr als nur einer Eigenschaft abhängen. Was genau soll das heißen?

Du kennst wahrscheinlich bereits Zufallsversuche, die sich auf eine Eigenschaft konzentrieren:

  • beim Werfen eines Würfels geht es um die Augenzahl
  • beim Ziehen einer Kugel geht es um die Farbe
  • beim Münzwurf geht es um das Symbol

Betrachten wir folgendes Beispiel: In einem Behältnis liegen grüne und rote Kugeln, auf denen die Zahlen von 0 bis 9 stehen. Beim zufälligen Ziehen einer solchen Kugel kannst du jetzt zwei Eigenschaften untersuchen: Farbe und Zahl.

Beispiel: Ziehen einer Kugel
Beispiel: Ziehen einer Kugel

Wir können für das einmalige Ziehen einer Kugel also zwei Ereignisse formulieren, die sich auf unterschiedliche Eigenschaften beziehen:

  • Ereignis 1: E = Die Kugel trägt höchstens die Zahl 5.
  • Ereignis 2: F = Es ist eine rote Kugel.

Die Ereignismengen sehen wie folgt aus:

  •  $E = \{0, 1, 2, 3, 4, 5\}$
  •  $F = \{0, 2, 3, 8\}$

Nun könnten wir die Wahrscheinlichkeiten für die Ereignisse $E$ und $F$ separat berechnen.

Die zwei Ereignisse $E$ und $F$ lassen sich aber auch kombinieren. Wir könnten uns zum Beispiel dafür interessieren, wie groß die Wahrscheinlichkeit ist, dass eine Kugel gezogen wird, die $rot$ ist und nicht größer als $5$.

Wir führen die beiden Ereignisse zusammen und verknüpfen sie mit einem "mathematischen und." In der Mathematik haben wir für "und" ein eigenes Symbol: $ \cap$

Wir schreiben also:

$E \cap F = \{0, 2, 3\}$

Dies ist die Schnittmenge der beiden Ereignisse $E$ und $F$. In ihr sind nun alle Elemente, die sowohl zum Ereignis $E$ als auch zum Ereignis $F$ gehören. Die Kugeln mit den Zahlen $0$, $2$ und $3$ erfüllen beide Bedingungen, sind also sowohl $rot$ als auch mit einer Zahl nicht größer als $5$ beschriftet.

Wir müssen also erst beide Ereignisse zusammenführen, indem wir die Schnittmenge bilden, um nun die Wahrscheinlichkeit für die Schnittmenge berechnen zu können.

$P(E \cap F) = \frac{3}{10} = 0,3 ~~\widehat{=}~~30 \%$

Merke

Bei einem Zufallsversuch, bei dem zwei Eigenschaften betrachtet werden, gilt:

Alle Ergebnisse, die sowohl in der einen Ereignismenge ($E$) als auch in der anderen Ereignismenge ($F$) liegen, bilden die Schnittmenge $E \cap F$.

Die Vereinigungsmenge

Betrachten wir noch einmal unser Beispiel:

  • Ereignis 1 (Die Kugel trägt höchstens die Zahl 5.): $E = \{0, 1, 2, 3, 4, 5\}$
  • Ereignis 2 (Es ist eine rote Kugel.): $F = \{0, 2, 3, 8\}$

Wir kennen bereits die Schnittmenge, bei der die beiden Ereignisse mit einem "und" verknüpft werden.

Bei der Vereinigungsmenge setzen wir an die Stelle des "und" ein "oder." Diese "oder" wird in der Mathematik so abgekürzt: $\cup$

Die Kombination der beiden Ereignisse $E$ und $F$ lautet also: Wie groß ist die Wahrscheinlichkeit eine Kugel zu ziehen, die entweder rot ist oder mit einer Zahl kleiner gleich 5 beschriftet ist oder beide Bedingungen erfüllt? 

Wie schon bei der Schnittmenge können wir erst durch das Kombinieren der beiden Ereignisse die Wahrscheinlichkeit rechnerisch ermitteln:

$E \cup F = \{0, 1, 2, 3, 4, 5, 8\}$

$P(E \cup F) = \frac{7}{10} = 0,7 ~~\widehat{=}~~70 \%$

WICHTIG: Die Vereinigungsmenge enthält auch die Elemente der Schnittmenge $E \cap F = \{0, 2, 3\}$.

Merke

Bei einem Zufallsversuch, bei dem zwei Eigenschaften betrachtet werden, gilt:

Alle Ereignisse, die in der einen Ereignismenge ($E$) oder in der anderen Ereignismenge ($F$) oder in beiden Ereignismengen ($E \cap F$) liegen, bilden die Vereinigungsmenge $E \cup F$.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie lautet die Schnittmenge $E \cap F$ ?

E = nur gerade Zahlen
F = nur grüne Kugeln

image

Teste dein Wissen!

Wie lautet die Vereinigungsmenge $E \cup F$ ?
 
E= nur ungerade Zahlen
F= nur rote Kugeln

image

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher Term entspricht einer Vereinigungsmenge?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher Term entspricht einer Schnittmenge?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

24.02.2024
Die Wünsche beim lernen werden gehört. Leider geht die app nicht.Das finde wir nicht in Ordnung.
16.02.2024 , von Jivitha U.
Alles besser geworden
15.02.2024
Sehr zufrieden
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7907