Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Zufallsexperimente: Münz- und Würfelwurf

Inhaltsverzeichnis:

Die Berechnung von Wahrscheinlichkeiten bei einfachen Zufallsexperimenten ist leicht zu lernen. Um die Mathematik hinter dem Zufall zu verstehen, beschäftigen wir uns mit zwei Beispielen: zum einen mit dem einmaligen Werfen einer Münze, zum anderen mit dem einmaligen Werfen eines Würfels.

Merke

Merke

Hier klicken zum Ausklappen

Bei einfachen Zufallsexperimenten gilt:

$P(E)~=~\frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse}$

$P(E)$ steht für die Wahrscheinlichkeit, dass das Ereignis $E$ eintritt.

Zufallsversuch: Münze werfen

Das Werfen einer Münze ist ein typisches Beispiel für einen Zufallsversuch. Andere Beispiele für Zufallsversuche sind zum Beispiel Glücksspiele oder die Seitenauswahl vor dem Fußballspiel. Der Münzwurf gilt jedoch als der einfachste echte Zufallsversuch. Die Münze landet so, dass entweder der Kopf oder die Zahl nach oben zeigt. Welche Seite nach oben zeigt, hängt vom Zufall ab. Die jeweilige Wahrscheinlichkeit, dass eines dieser Ereignisse eintritt, liegt in beiden Fällen bei $50 \%$. Theoretisch ist es auch denkbar, dass die Münze auf der schmalen Kante landet. Dieses extrem unwahrscheinliche Ereignis lassen wir hier jedoch unbeachtet.

Eine 1 ? Münze von vorne und hinten
Die beiden Seiten einer 1 € Münze

Wir möchten untersuchen, wie wahrscheinlich das Ereignis ist, dass die Münze so auf dem Boden landet, dass die Zahl nach oben zeigt.

  • Ergebnismenge = {Kopf, Zahl}
  • Ereignismenge = {Zahl}

Wir betrachten also ein erwünschtes Ergebnis von insgesamt zwei möglichen Ergebnissen.

Die Wahrscheinlichkeit, dass dieses Ereignis eintritt, errechnet sich wie folgt:

$P(E) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse} = \frac {1}{2} = 0,5 ~~\widehat{=}~~50\%$

Das Gegenereignis $P (\overline {E})$ beträgt dann natürlich ebenfalls $50\%$.

$P (\overline {E}) = 1 - P (E) = 1 - \frac {1}{2} = \frac {1}{2} = 0,5 ~~\widehat{=}~~50 \%$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Zufallsversuch: Würfel werfen

Ein normaler Würfel besitzt sechs Seiten mit sechs unterschiedlichen Zahlen. Da alle sechs Seiten gleich groß sind, besitzt jede Zahl die gleiche Wahrscheinlichkeit gewürfelt zu werden:

$P (E) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse} = \frac {1}{6} \approx 0,1667 ~~\widehat{=} ~~16,67\%$

Wahrscheinlichkeiten bei einem sechsseitigen Würfel
Wahrscheinlichkeiten bei einem sechsseitigen Würfel

Ein Ereignis muss jedoch nicht aus nur einer Zahl bestehen. Betrachten wir das Ereignis "eine 2 oder eine 3 würfeln":

$P (2, 3) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse} = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$

Methode

Methode

Hier klicken zum Ausklappen

Alternativer Lösungsweg

Du könntest natürlich auch die einzelnen Wahrscheinlichkeiten der Seiten "2" und "3" addieren:

$P (2, 3) = \frac {1}{6} + \frac {1}{6} = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$

Zufallsversuche mit ungleichen Wahrscheinlichkeiten

Es gibt auch Zufallsexperimente, bei denen nicht alle Ergebnisse gleich wahrscheinlich sind - der Ausgang des Experiments ist aber immer noch zufällig. Schauen wir uns dazu wieder einen sechsseitigen Würfel an.

Ein aufgeklappter, sechsseitiger Würfel.
Netz eines sechsseitigen Würfels

Wie du siehst, ist dies kein gewöhnlicher Würfel: die $2$ und die $3$ sind auf jeweils zwei Seiten, wohingegen die $4$ und die $5$ gar nicht vorkommen.

Die Wahrscheinlichkeiten sind nun nicht mehr für alle Zahlen gleich. Betrachten wir das Ereignis "eine $2$ würfeln", müssen wir beachten, dass es nun zwei von insgesamt sechs Seiten gibt, die zu diesem Ereignis führen. Dasselbe gilt für das Ereignis "eine $3$ würfeln".

  • $P(1) = \frac {1}{6} \approx 0,1667 ~~\widehat{=}~~ 16,67\%$
  • $P(2) = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$
  • $P(3) = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$
  • $P(4) = \frac {0}{6} = 0 ~~\widehat{=}~~0\%$
  • $P(5) = \frac {0}{6} = 0 ~~\widehat{=}~~0\%$
  • $P(6) = \frac {1}{6} \approx 0,1667 ~~\widehat{=}~~16,67\%$

 

In den Übungsaufgaben kannst du dein Wissen nun testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie lautet das Gegenereignis?

$P(E) = 0,65~~\widehat{=}~~65\%$

Teste dein Wissen!

Bei einfachen Zufallsexperimenten gilt...

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist die Wahrscheinlichkeit bei einem normalen, sechsseitigen Würfel eine Drei zu würfeln?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Es gibt auch Zufallsexperimente bei denen nicht alle Ergebnisse gleich wahrscheinlich sind - der Ausgang des Experiments ist aber immer noch … (Kreuze die richtige Antwort an.)

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7908