Suche
Kontakt
>
Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Zufallsexperimente: Münz- und Würfelwurf

Zufallsexperimente - Münz- & Würfelwurf! | Statistik verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Die Berechnung von Wahrscheinlichkeiten bei einfachen Zufallsexperimenten ist leicht zu lernen. Um die Mathematik hinter dem Zufall zu verstehen, beschäftigen wir uns mit zwei Beispielen: zum einen mit dem einmaligen Werfen einer Münze, zum anderen mit dem einmaligen Werfen eines Würfels.

Merke

Bei einfachen Zufallsexperimenten gilt:

$P(E)~=~\frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse}$

$P(E)$ steht für die Wahrscheinlichkeit, dass das Ereignis $E$ eintritt.

Zufallsversuch: Münze werfen

Das Werfen einer Münze ist ein typisches Beispiel für einen Zufallsversuch. Andere Beispiele für Zufallsversuche sind zum Beispiel Glücksspiele oder die Seitenauswahl vor dem Fußballspiel. Der Münzwurf gilt jedoch als der einfachste echte Zufallsversuch. Die Münze landet so, dass entweder der Kopf oder die Zahl nach oben zeigt. Welche Seite nach oben zeigt, hängt vom Zufall ab. Die jeweilige Wahrscheinlichkeit, dass eines dieser Ereignisse eintritt, liegt in beiden Fällen bei $50 \%$. Theoretisch ist es auch denkbar, dass die Münze auf der schmalen Kante landet. Dieses extrem unwahrscheinliche Ereignis lassen wir hier jedoch unbeachtet.

Eine 1 ? Münze von vorne und hinten
Die beiden Seiten einer 1 € Münze

Wir möchten untersuchen, wie wahrscheinlich das Ereignis ist, dass die Münze so auf dem Boden landet, dass die Zahl nach oben zeigt.

  • Ergebnismenge = {Kopf, Zahl}
  • Ereignismenge = {Zahl}

Wir betrachten also ein erwünschtes Ergebnis von insgesamt zwei möglichen Ergebnissen.

Die Wahrscheinlichkeit, dass dieses Ereignis eintritt, errechnet sich wie folgt:

$P(E) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse} = \frac {1}{2} = 0,5 ~~\widehat{=}~~50\%$

Das Gegenereignis $P (\overline {E})$ beträgt dann natürlich ebenfalls $50\%$.

$P (\overline {E}) = 1 - P (E) = 1 - \frac {1}{2} = \frac {1}{2} = 0,5 ~~\widehat{=}~~50 \%$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Zufallsversuch: Würfel werfen

Ein normaler Würfel besitzt sechs Seiten mit sechs unterschiedlichen Zahlen. Da alle sechs Seiten gleich groß sind, besitzt jede Zahl die gleiche Wahrscheinlichkeit gewürfelt zu werden:

$P (E) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse} = \frac {1}{6} \approx 0,1667 ~~\widehat{=} ~~16,67\%$

Wahrscheinlichkeiten bei einem sechsseitigen Würfel
Wahrscheinlichkeiten bei einem sechsseitigen Würfel

Ein Ereignis muss jedoch nicht aus nur einer Zahl bestehen. Betrachten wir das Ereignis "eine 2 oder eine 3 würfeln":

$P (2, 3) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ aller\ möglichen\ Ergebnisse} = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$

Methode

Alternativer Lösungsweg

Du könntest natürlich auch die einzelnen Wahrscheinlichkeiten der Seiten "2" und "3" addieren:

$P (2, 3) = \frac {1}{6} + \frac {1}{6} = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$

Zufallsversuche mit ungleichen Wahrscheinlichkeiten

Es gibt auch Zufallsexperimente, bei denen nicht alle Ergebnisse gleich wahrscheinlich sind - der Ausgang des Experiments ist aber immer noch zufällig. Schauen wir uns dazu wieder einen sechsseitigen Würfel an.

Ein aufgeklappter, sechsseitiger Würfel.
Netz eines sechsseitigen Würfels

Wie du siehst, ist dies kein gewöhnlicher Würfel: die $2$ und die $3$ sind auf jeweils zwei Seiten, wohingegen die $4$ und die $5$ gar nicht vorkommen.

Die Wahrscheinlichkeiten sind nun nicht mehr für alle Zahlen gleich. Betrachten wir das Ereignis "eine $2$ würfeln", müssen wir beachten, dass es nun zwei von insgesamt sechs Seiten gibt, die zu diesem Ereignis führen. Dasselbe gilt für das Ereignis "eine $3$ würfeln".

  • $P(1) = \frac {1}{6} \approx 0,1667 ~~\widehat{=}~~ 16,67\%$
  • $P(2) = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$
  • $P(3) = \frac {2}{6} = \frac {1}{3} \approx 0,3333 ~~\widehat{=}~~33,33\%$
  • $P(4) = \frac {0}{6} = 0 ~~\widehat{=}~~0\%$
  • $P(5) = \frac {0}{6} = 0 ~~\widehat{=}~~0\%$
  • $P(6) = \frac {1}{6} \approx 0,1667 ~~\widehat{=}~~16,67\%$

 

In den Übungsaufgaben kannst du dein Wissen nun testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie lautet das Gegenereignis?

$P(E) = 0,65~~\widehat{=}~~65\%$

Teste dein Wissen!

Bei einfachen Zufallsexperimenten gilt...

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist die Wahrscheinlichkeit bei einem normalen, sechsseitigen Würfel eine Drei zu würfeln?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Es gibt auch Zufallsexperimente bei denen nicht alle Ergebnisse gleich wahrscheinlich sind - der Ausgang des Experiments ist aber immer noch … (Kreuze die richtige Antwort an.)

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

30.10.2024
Der Lehrer verwendet gute Beispiele für die Kids, um Eselsbrücken zu bauen. Und er nimmt sich viel Zeit für die Kids.
18.10.2024
es läuft optimal im Mathe LK
09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
Gratis Beratung (heute 7-22 Uhr)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7908