Mathematik > Geometrie

Kongruenzsätze: Dreiecke konstruieren - Erklärung

Inhaltsverzeichnis:

Ein Dreieck ist eine geometrische Figur, die aus drei Eckpunkten, drei Seiten und drei Winkeln besteht. Diese werden immer nach dem gleichen Schema benannt:

dreieckbenennung1
Abbildung: beschriftetes Dreieck

Die Punkte eines Dreiecks werden mit Großbuchstaben benannt. Den Punkt A kannst du beliebig setzen. Danach erfolgt die Beschriftung der Punkte in alphabetischer Reihenfolge gegen den Uhrzeigersinn. Gegenüber des Punktes A liegt die Seite a, gegenüber des Punktes B die Seite b, und gegenüber des Punktes C die Seite c. Die Seiten eines Dreiecks werden mit Kleinbuchstaben benannt. Die Winkel werden mit kleinen griechischen Buchstaben benannt. Ein Winkel wird immer nach dem Punkt, an dem er liegt, benannt. Das heißt, im Punkt A liegt der Winkel $\alpha$, im Punkt B der Winkel $\beta$, und im Punkt C der Winkel $\gamma$.

Voraussetzungen, um ein Dreieck eindeutig konstruieren zu können

Um ein bestimmtes Dreieck konstruieren zu können, müssen wir bestimmte Angaben, Seiten ($s$) und Winkel ($w$), kennen. Du musst drei Größen des Dreiecks kennen und einen der vier Kongruenzsätze anwenden können, um ein bestimmtes Dreieck konstruieren zu können.

Merke

Merke

Hier klicken zum AusklappenKongruenzsätze
  • $SSS$
  • $SWS$
  • $SSW$
  • $WSW$

Wenn einer der vier Kongruenzsätze erfüllt ist, kann das Dreieck eindeutig konstruiert werden.

Um also ein bestimmtes Dreieck zeichnen zu können, brauchen wir drei Angaben und müssen einen der vier Kongruenzsätze anwenden können. Die drei Winkel eines Dreiecks zu kennen reicht also nicht aus, um ein Dreieck eindeutig zeichnen zu können, denn $WWW$ ist kein Kongruenzsatz. Wenn du nur die Größen der drei Winkel kennst, gibt es nämlich viele unterschiedliche Möglichkeiten, ein Dreieck zu konstruieren. 

Um ein Dreieck zu konstruieren, benötigen wir als Hilfsmittel ein Geodreieck und einen Zirkel.

SSS - Dreieck konstruieren

Ein Dreieck kann eindeutig konstruiert werden, wenn die Längen aller drei Seiten bekannt sind.

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise:

  1. Ich zeichne eine Skizze und beschrifte sie ($A$, $B$, $C$, $a$, $b$, $c$, $\alpha$, $\beta$, $\gamma$).
  2. Ich suche mir eine Seite aus und zeichne die Seite mit ihrer gegebenen Länge ein. Anschließend beschrifte ich die Seite mit dem richtigen Kleinbuchstaben und den Anfangspunkt und den Endpunkt der Seite mit den richtigen Großbuchstaben, so wie in der Skizze.
  3. Ich messe die Länge der zweiten Seite mit dem Zirkel ab und schlage einen Kreisbogen um den richtigen Punkt (Anfangspunkt oder Endpunkt).
  4. Ich messe die Länge der dritten Seite mit dem Zirkel ab und schlage einen Kreisbogen um den anderen Punkt (Anfangspunkt oder Endpunkt).
  5. Die beiden Kreisbogen schneiden sich in einem Punkt. Ich markiere diesen Punkt.
  6. Ich verbinde den markierten Punkt mit dem Anfangspunkt und dem Endpunkt der ersten Seite. Das Dreieck ist nun konstruiert.

Schauen wir uns dazu ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Konstruiere folgendes Dreieck:

$a= 6~cm, b=3~cm, c=5~cm$

Zunächst fertigen wir eine Skizze an:

skizze1
Abbildung: Skizze SSS

Wir zeichnen eine Seite ein. Entscheiden wir uns für die Seite $c$, so müssen wir den Anfangspunkt mit $A$ und den Endpunkt mit $B$ beschriften. Nur so kann der Punkt $C$ gegenüber der Seite $c$ liegen.

sssdreieckskonstruktion1
Abbildung: Seite zeichnen und beschriften

Nun schlagen wir um beide Punkte je einen Kreisbogen. Wir setzen die Zirkelspitze auf Punkt $A$ und schlagen um Punkt $A$ einen Kreisbogen mit dem Radius $3~cm$ ($r=3~cm$). Wir setzen die Zirkelspitze auf Punkt $B$ und schlagen um Punkt $B$ einen Kreisbogen mit dem Radius $6~cm$ ($r=6~cm$). Um Punkt $A$ wird also ein Kreisbogen mit der Länge der Seite $b$ geschlagen und um Punkt $B$ ein Kreisbogen mit der Länge der Seite $a$. Der Schnittpunkt der beiden Kreisbogen ist Punkt $C$.

sssdreieckskonstruktion2
Abbildung: Schnittpunkt der beiden Kreisbogen markieren

Punkt $C$ wird nun mit den Punkten $A$ und $B$ verbunden. Das Dreieck ist nun konstruiert. Abschließend solltest du noch alle Punkte, Seiten und Winkel richtig beschriften.

sssdreieckskonstruktion3
Abbildung: Dreieck konstruieren und beschriften
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

SWS - Dreieck konstruieren

Wenn wir zwei Seiten eines Dreiecks und den zwischen diesen beiden Seiten liegenden Winkel kennen, können wir das Dreieck eindeutig konstruieren.

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise:

  1. Ich zeichne eine Skizze und beschrifte sie ($A$, $B$, $C$, $a$, $b$, $c$, $\alpha$, $\beta$, $\gamma$).
  2. Ich zeichne eine der beiden bekannten Seiten und beschrifte diese Seite sowie den Anfangspunkt und den Endpunkt.
  3. Ich zeichne den gegebenen Winkel am richtigen Punkt ein. Es entsteht eine Halbgerade.
  4. Ich messe die Länge der zweiten Seite auf dieser Halbgeraden ab und markiere den Endpunkt auf der Halbgeraden.
  5. Ich verbinde den Endpunkt mit den anderen beiden Punkten.

Schauen wir uns auch hierzu ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Konstruiere folgendes Dreieck:

$a=2,5~cm$, $\gamma = 60^\circ$ und $b=5~cm$

Zu Beginn machen wir eine Skizze:

Bitte Beschreibung eingeben
Abbildung: Skizze SWS

Wir zeichnen zunächst eine Seite (hier die Seite $a$) und tragen am Punkt $C$ den Winkel $\gamma$ ab:

konstruktionsws1
Abbildung: Seite und Winkel

Nun messen wir auf der gestrichelten Linie die Länge der Seite $b$ ab und markieren den Punkt. Der markierte Punkt ist Punkt $A$.

konstruktionsws2
Abbildung: Länge am freien Schenkel markieren

Nun müssen wir nur noch die Punkte $A$ und $B$ verbinden. Das Dreieck ist konstruiert.

konstruktionsws3
Abbildung: fertig konstruiertes Dreieck

SSW - Dreieck konstruieren

Ein Dreieck von welchem zwei Seiten und ein angrenzender Winkel gegeben sind, kann eindeutig konstruiert werden.

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise:

  1. Ich zeichne eine Skizze und beschrifte sie ($A$, $B$, $C$, $a$, $b$, $c$, $\alpha$, $\beta$, $\gamma$).
  2. Ich zeichne die Seite, an die der Winkel angrenzt, und beschrifte die Seite sowie den Anfangspunkt und den Endpunkt.
  3. Ich zeichne den Winkel am richtigen Punkt der Seite ein. Es entsteht ein freier Schenkel (Halbgerade).
  4. Ich messe die Länge der zweiten Seite mit dem Zirkel ab und zeichne einen Kreisbogen um den freien Punkt der ersten Seite.
  5. Der Schnittpunkt des freien Schenkels und des Kreisbogens ist der gesuchte dritte Punkt. Ich verbinde diesen Punkt nun mit den anderen beiden Punkten. Das Dreieck ist konstruiert.

Schauen wir uns auch hierzu ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Konstruiere folgendes Dreieck:

$a=4~cm$, $c=3~cm$ und $\alpha=120^\circ$

Wir fertigen eine Skizze an:

sswdreieckskonstruktion
Abbildung: Skizze SSW

Wir zeichnen zunächst die Seite, die in der Mitte liegt, also hier Seite $c$. Wir benennen den Anfangspunkt und den Endpunkt mit den Buchstaben $A$ und $B$. Am Punkt $A$ wird nun der Winkel $\alpha$ abgetragen und eine Hilfslinie (Halbgerade) eingezeichnet.

sswdreieckskonstruktion1
Abbildung: Seite und Winkel einzeichnen

Nun wird um den Punkt $B$, also um den Punkt, an dem der Winkel nicht anliegt, mit dem Zirkel ein Kreisbogen geschlagen. Dieser Kreisbogen hat den Radius der zweiten bekannten Seite (hier: $a=4~cm$). Der Kreisbogen und die Halbgerade des Winkels treffen sich in einem Punkt. Dies ist der dritte Punkt des Dreiecks (hier: $C$).

sswdreieckskonstruktion2
Abbildung: Der dritte Punkt ist der Schnittpunkt von Kreisbogen und Halbgerade

Punkt $C$ wird nun mit den Punkten $A$ und $B$ verbunden. Das Dreieck ist konstruiert.

sswdreieckskonstruktion3
Abbildung: konstruiertes Dreieck

Abschließend solltest du noch alle Punkte und Seiten (und ggf. auch die Winkel) korrekt beschriften.

WSW - Dreieck konstruieren

Die Länge einer Seite und die Größen der zwei angrenzenden Winkel reichen ebenfalls aus, um ein Dreieck eindeutig zu konstruieren. Das heißt, du musst die Größe von zwei Winkeln kennen und die Länge der Seite, die zwischen diesen beiden Winkeln liegt.

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise:

  1. Ich zeichne eine Skizze und beschrifte sie ($A$, $B$, $C$, $a$, $b$, $c$, $\alpha$, $\beta$, $\gamma$).
  2. Ich zeichne die gegebene Seite.
  3. Ich trage die beiden Winkel an den Endpunkten der Seite ab und zeichne zwei Hilfslinien (Halbgeraden).
  4. Die zwei Halbgeraden schneiden sich in einem Punkt. Dieser Schnittpunkt ist der gesuchte dritte Punkt des Dreiecks.

Schauen wir uns hierzu ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Konstruiere folgendes Dreieck:

$a=4~cm$, $\beta=40^\circ$, $\gamma =80^\circ$

Wir fertigen eine Skizze an:

wswdreieckskonstruktion
Abbildung: Skizze WSW

Die Seite wird eingezeichnet und die beiden gegebenen Winkel werden abgetragen. Die zwei Hilfslinien schneiden sich in einem Punkt. Dieser Punkt ist der dritte Punkt des Dreiecks und muss nun mit den anderen beiden Punkten verbunden werden.

wswdreieckskonstruktion1
Abbildung: Dreieck konstruieren

Das Dreieck ist nun konstruiert. Abschließend solltest du auch hier wieder alle Punkte, Seiten und Winkel korrekt beschriften.

wswdreieckskonstruktion2
Abbildung: konstruiertes und beschriftetes Dreieck

Nun haben wir die vier Kongruenzsätze und die entsprechenden Konstruktionen kennengelernt. Unsere Übungsaufgaben helfen dir dabei, das Konstruieren von Dreiecken zu üben. Viel Erfolg!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Konstruiere ein Dreieck mit den folgenden Angaben: $a=3cm, b= 4cm$ und $c=2 cm$
Welches der hier abgebildeten Dreiecke ist richtig?

Teste dein Wissen!

Welche Kongruenzsätze existieren, um ein Dreieck eindeutig zu konstruieren?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bei welcher der folgenden Aufgaben wendest du den Kongruenzsatz SSW an?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie wird ein Dreieck nach dem Kongruenzsatz $SSW$ richtig konstruiert? Markiere die richtige Antwort.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Dreieck mit H?he
Höhensatz des Euklid verstehen und beweisen
Kathetensatz des Euklid
Kathetensatz des Euklid - Was ist das?
Viereck mit zwei rechten Winkeln.
Satz des Pythagoras - Textaufgabe mit Lösungen
Rechtwinkliges Dreieck.
Was ist der Satz des Pythagoras? - Formel und Beweis
Gr??en im Kegelstumpf
Kegelstumpf: Höhe, Volumen und Flächen berechnen
Aufbau eines Kreiskegels.
Kegel: Oberfläche und Volumen berechnen
Kugelsegment
Kugelsegment und Kugelausschnitt
Der Hexaeder
Was sind platonische Körper?
Pyramidenstumpf
Pyramidenstumpf: Volumen und Oberfläche berechnen
Der Quader.
Quader und Würfel: Formeln für Fläche und Volumen
Die Kugel.
Umfang, Oberfläche und Volumen einer Kugel: Formeln
Beispiel zweier Prismen
Was ist ein Prisma? - Volumen und Oberfläche berechnen
Pyramiden im Quader.
Pyramide: Oberfläche und Volumen berechnen
Aufbau eines Zylinders
Zylinder: Oberfläche und Volumen berechnen
scheitelwinkel-2
Winkelarten und Winkeltypen im Überblick
winkel-5
Winkel messen mit einem Geodreieck
winkel-alltag
Was ist ein Winkel und welche Winkelarten gibt es?
winkel zeichnen 4
Winkel zeichnen mit einem Geodreieck
innenwinkelsumme-dreieck
Winkel berechnen - Formel und Aufgaben
uebersicht-winkel.
Winkelarten und Winkeltypen bestimmen
Achsenspiegelung
Achsenspiegelung: Punkte an einer Achse spiegeln
diagonale
Diagonale von Vierecken und Quadraten berechnen
gerade
Gerade, Strecke, Strahl zeichnen - Einführung in die Geometrie
sssdreieckskonstruktion3
Kreis und Dreieck mithilfe eines Zirkels zeichnen
lot faellen 1
Lot fällen - Schritt für Schritt erklärt
mittelsenkrechte-halbieren einer strecke
Wie zeichnet man eine Mittelsenkrechte?
parallel Geraden
So zeichnest du parallele Geraden
punktspiegelung 3
Punktspiegelung - Schritt für Schritt erklärt
Punktspiegelung_zentrum_2
Spiegelpunkt und Spiegelachse konstruieren
punktspiegelung_2_neu
Unterscheidung Achsen- und Punktspiegelung
winkelhalbiente_7
Winkelhalbierende konstruieren und zeichnen
umfangswinkelsatz_beweis2
Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis
sssdreieckskonstruktion3
Kongruenzsätze: Dreiecke konstruieren - Erklärung
Bitte Beschreibung eingeben
Kosinus - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Sinus - Rechnen mit der Winkelfunktion
Bitte Beschreibung eingeben
Tangens - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Winkelfunktionen in rechtwinkligen Dreiecken
tricks mit 10
Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen
tan-1
Winkelfunktionen: Textaufgabe mit Lösung
leicht erkl?rt text 1
Winkelfunktionen: Sinus, Cosinus & Tangens (Formeln)
Zwei ?hnliche Dreiecke
Wie lauten die Kongruenzsätze?
Symmetrie Achsensymmetrie anhand eines Vielecks
Symmetrie von Figuren: Erklärung und Abbildungen
Strahlens?tze Anwendungsbeispiele
Strahlensätze - Aufgaben mit Lösungen
Zweiter Strahlensatz
Erster und zweiter Strahlensatz: Formel und Erklärung
Zentrische Streckung Beispiel
Zentrische Streckung - Einführung & Erklärung
Allgemeine Darstellung eines Dreiecks
Flächeninhalt und Umfang von Dreiecken berechnen
Parallelogramm mit der H?he ha
Flächeninhalt und Umfang eines Parallelogramms berechnen
Fl?cheninhalt eines Parallelogramms
Trapez: Flächeninhalt und Umfang berechnen
drache_bezeichnungen
Drachenviereck - Flächeninhalt und Konstruktion
Von links nach rechts: Quadrat, Parallelogramm, Dreieck, Trapez
Figuren und Flächen in der Mathematik - Eine Einführung
Strecke zwischen A und B
Was ist eine Strecke, eine Halbgerade und eine Gerade?
Eine allgemeine Raute
Raute - Eigenschaften, Flächeninhalt, Umfang berechnen
vielecke
Regelmäßige Vielecke konstruieren und berechnen
zusammengestzte__flaechen_beispiel
Zusammengesetzte Flächen - Flächeninhalt und Umfang
Quadrat (links) und Rechteck (rechts)
Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen
Dreieck mit verl?ngerten Seiten
Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt
Umkreismittelpunkt eines Dreiecks
Besondere & ausgezeichnete Punkte im Dreieck
Beispiel f?r ein gleichseitiges Dreieck
Dreiecksarten - Namen und Eigenschaften
Schnittpunkt der Winkelhalbierenden
So konstruierst du Umkreis und Inkreis eines Dreiecks
Dreieck mit H?he
Diese Formeln brauchst du zum Dreieck berechnen!
Rechteck 6 x 4
Dimensionen der Geometrie: Flächen und ihre Berechnung
Schr?gbild eines W?rfels
Körpernetze erstellen - Beispiele und Übungsaufgaben
Schr?gbild eines allgemeinen Quaders
Schrägbilder einfacher Figuren zeichnen
Allgemeines Viereck
Vierecke - Eigenschaften und Arten
Schr?gbild eines allgemeinen Quaders
Dimensionen der Geometrie: Volumen berechnen
Schr?gbild eines allgemeinen Quaders
Quader: Fläche und Volumen berechnen
regelm??iges Oktagon
Vielecke: Arten und Eigenschaften
geraden_kreis
Geraden, Strecken und Winkel am Kreis
pi-beweis
Was ist die Kreiszahl Pi? - Erklärung und Herleitung
satz-des-thales
Satz des Thales - Erklärung und Beweis
kreis-1
Kreis - So berechnest du Flächeninhalt und Umfang!
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Berrin A., vom

Meine Tochter ist zufrieden und kommt gerne

anonymisiert, vom

Alle super freundlich.

Kerstin B., vom

Die Kommunikation mit dem Studienkreis in Brühl zwischen Leitung, Eltern und Kind ist schnell, direkt und ausführlich erklärt. Mein Sohn hat nur positive Erfahrungen bis jetzt dort gemacht.

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2021
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 Probestunden GRATIS & unverbindliche Beratung

In den Probestunden kann Ihr Kind uns testen und die Nachhilfe im Studienkreis kennenlernen.

In einem unverbindlichen Beratungsgespräch mit Ihnen, finden wir gemeinsam die optimale Förderung für Ihr Kind.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2 x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8577