Suche
Kontakt
>
Mathematik > Geometrie

Was ist ein Winkel und welche Winkelarten gibt es?

Was ist ein Winkel und welche Winkelarten gibt es? | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

 Im folgenden Lerntext geben wir dir einen Einblick in die Geometrie. Hierbei wird der Winkel betrachtet, was er ist, wie er entstehen kann, welche besonderen Winkel es gibt und wie du ihn mithilfe des Geodreiecks berechnen kannst.

Was ist ein Winkel?

Wenn sich zwei Geraden schneiden, entstehen Winkel. An dem Schnittpunkt der beiden Geraden befinden sich vier Winkel, wovon je zwei, die gegenüberliegenden, die gleiche Größe haben. Es kann auch sein, dass ein Winkel durch zwei Strahlen entsteht. Der gemeinsame Anfangspunkt der beiden Strahlen ist dann der Scheitelpunkt des Winkels.

winkel-allgemein
Abbildung Winkel aus zwei Geraden mit Schnittpunkt und Winkel aus zwei Strahlen mit Scheitelpunkt

Im Alltag begegnen uns Winkel überall: Dächer haben einen Neigungswinkel, jede Tür steht mit einem bestimmten Winkel offen, Flugzeuge heben von der Startbahn mit einem bestimmten Winkel ab, Straßen haben Steigungswinkel, geometrische Figuren haben Winkel und es gibt noch viele weitere Beispiele.

winkel-alltag
Abbildung Winkel im Alltag

Ein Flugzeug, welches abhebt oder auch landet hat immer einen Winkel zur Landebahn. Auch das Haus vom Nikolaus, welches eine geometrische Figur ist, hat viele verschiedene Winkel.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Winkelgrößen

Winkel werden in Grad ($^\circ$) angegeben. Die Gradzahlen sind zwischen $0^\circ$ und $360^\circ$ groß.
Bei $0^\circ$ existiert kein Winkel, bei $5^\circ$ ist er ganz klein. Ein rechter Winkel entsteht, wenn der Winkel $90^\circ$ beträgt, bei $180^\circ$ erhalten wir eine Gerade und bei $360^\circ$ einen Kreis.

winkel-1
Abbildung verschiedene Winkelgrößen

Winkelarten

Es gibt verschiedene Winkelarten. Je nach Gradzahl besitzen manche Winkel eine bestimmte Bezeichnung. So heißt ein Winkel, der $90^\circ$ groß ist, rechter Winkel. Oder eine Gerade, die eine Winkelgröße von $180^\circ$ hat, gestreckter Winkel. 

Außerdem gibt es noch Namen für Winkel, die zwischen zwei festgelegten Gradzahlen liegen, wie zum Beispiel spitze Winkel, die größer als $0^\circ$ und kleiner als $90^\circ$ sind.

uebersicht-winkel.
Abbildung Winkelarten

Winkel mit dem Geodreieck messen

Die Größe eines Winkels kann mit einem Geodreieck gemessen werden. 

Methode

 Vorgehensweise

  1. Das Geodreieck muss mit der Nullstelle auf dem Schnittpunkt des Winkels liegen.
  2. Die Kante des Geodreiecks muss nun an einer Geraden anliegen. Dabei soll das Geodreieck auf dem Winkel liegen.
  3. Nun muss die richtige Winkelskala ausgesucht werden. Die Winkelskala, die auf dem Geodreieck an der Geraden anliegt und bei null startet, ist die Richtige.
  4. Nun muss der Wert abgelesen werden. Notiere dir den abgelesenen Wert und überprüfe, ob der Winkel größer oder kleiner als ein rechter Winkel ist. Dann vergleiche mit dem zu messenden Winkel.

Selbstverständlich haben wir auch Beispiele und Übungsaufgaben zum Thema Winkel mit dem Geodreieck messen.

Winkel zeichnen

Wir können mit Hilfe des Geodreiecks auch Winkel einer bestimmten Größe zeichnen. Dafür gehen wir wie folgt vor:

Methode

Vorgehensweise

  1. Eine Gerade zeichnen.
  2. Das Geodreieck an die Gerade so anlegen, dass der Nullpunkt am Ende der Geraden liegt.
  3. Den angegebenen Winkel ablesen und mit einem Punkt markieren.
  4. Den Endpunkt der Gerade mit dem Markierungspunkt verbinden.

Du kannst dir auch unsere Beispiele und Übungsaufgaben zum Thema Winkel mit dem Geodreieck zeichnen anschauen. Dein erlerntes Wissen über den Winkel und die verschiedenen Winkelarten kannst du in unseren Übungen festigen. Wir wünschen dir dabei viel Spaß!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Mit dem Geodreieck kann man...

Teste dein Wissen!

Wie werden Winkelgrößen angegeben und wie groß können sie werden?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher Winkel ist korrekt beschrieben?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie entsteht ein Winkel? Kreuze die richtige Ausssage an.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

16.02.2024 , von Jivitha U.
Alles besser geworden
15.02.2024
Sehr zufrieden
14.02.2024 , von Anne L.
Es wird in kleinen Gruppen gelernt, sodass auf die einzelnen Schüler eingegangen werden kann. Die Nachhilfelehrer sind motiviert und mit Geduld dabei. Die Nachhilfe findet in angenehmer Atmosphäre statt. Innerhalb weniger Wochen konnte der Unterrichtsstoff aufgearbeitet werden und die nächsten Noten haben den Erfolg nochmal deutlich gezeigt. Ich würde die Studienkreis Nachhilfe jedem weiterempfehlen.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7796