Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis

Mathematik > Geometrie
Peripheriewinkelsatz und Umfangswinkelsatz! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

 Der Umfangswinkelsatz, oder auch Peripheriewinkelsatz genannt, ist ein Satz in der Geometrie. Es handelt sich um ein Dreieck in einem Kreis, welches durch eine feste Sehne, hier die Strecke $\overline{AB}$ und einen beweglichen Punkt $C$ definiert ist. Dabei besagt der Umfangswinkelsatz, dass der Winkel am Punkt $C$ immer gleich groß ist.

umfangwinkelsatz_1
Abbildung: Umfangswinkelsatz

Wir sehen an der oberen Abbildung die Strecke $\overline{AB}$, die eine feste Sehne im Kreis ist. Der Punkt $C$ wurde nun auf der Kreislinie bewegt. Der Winkel an dem Punkt (hier $\gamma$) verändert sich nicht, seine Größe ist immer gleich.

Was sagt der Umfangwinkelsatz aus?

Merke

Der Umfangswinkelsatz besagt, dass der Umfangswinkel zur selben Kreissehne gleich groß ist.

Dieser Tatbestand kann bewiesen werden. Schauen wir uns den Beweis einmal an:

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Beweis des Umfangwinkelsatz

Um den Umfangswinkelsatz zu beweisen, müssen wir zunächst beweisen, dass der Mittelpunktswinkel doppelt so groß ist wie der Umfangswinkel. Die folgende Abbildung veranschaulicht dies:

umfangswinkelsatz_2
Abbildung: Der Mittelwinkel ist doppelt so groß wie der Umfangswinkel

Wir sehen, dass der Mittelpunktswinkel $\beta = 68,22^\circ$ doppelt so groß ist, wie der Umfangswinkel $\alpha = 34,11^\circ$. Dies gilt es zu beweisen! Denn wenn wir dies bewiesen haben, haben wir auch den Umfangswinkelsatz bewiesen. Der Winkel am Mittelpunkt verändert sich beim Bewegen vom Punkt $C$ nicht. Dennoch bleibt der Winkel im Punkt C halb so groß wie der Winkel am Mittelpunkt.

Wir ziehen vom Mittelpunkt zum Punkt $C$ eine Gerade und erhalten drei Dreiecke mit mehreren Winkeln:

umfangswinkelsatz_beweis2
Abbildung: Skizze zum Beweis des Umfangswinkelsatzes

Wir wissen, dass die Innenwinkelsumme jedes beliebigen Dreiecks $180^\circ$ groß ist. Unser Ziel ist es zu beweisen, dass $\beta = 2\alpha$.

Starten wir mit der Bestimmung von $\delta $ und $\zeta$:

$180^\circ= \epsilon + 2\cdot \delta$

$\epsilon = 180^\circ -2 \delta$

$\zeta = 180^\circ -2 \gamma$

Wir wissen, dass in einem Kreis die Winkelsumme insgesamt aus $360^\circ$ beträgt. Dies wenden wir an:

$360^\circ = \epsilon + \zeta + \beta$

$\beta= 360^\circ -\epsilon - \zeta$

Setzen wir nun die zuvor bestimmten Terme für $\delta $ und $\zeta$ ein:

$\beta= 360^\circ - (180^\circ -2 \delta) - (180^\circ -2 \gamma)$

$\beta= 360^\circ - 180^\circ + 2\delta -180^\circ + 2 \gamma)$

$\beta = 2\delta + 2\gamma$

$\beta = 2 (\delta + \gamma)$

$\beta = 2 \alpha$

Damit ist bewiesen, dass der Umfangswinkel immer halb so groß ist wie der Mittelwinkel. Daraus können wir schließen, dass der Umfangswinkel immer gleich groß ist, da sich der Mittelpunktswinkel beim Bewegen von Punkt $C$ nicht verändert.

Mit den Übungsaufgaben kannst du dein neues Wissen jetzt testen. Viel Erfolg dabei!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie groß ist der Winkel $\alpha$?

Umfangswinkelsatz_3



Teste dein Wissen!

Die Winkelsumme eines Kreises beträgt:

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist der gesuchte Winkel $\alpha$?

Umfangswinkelsatz_4



Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was besagt der Umfangswinkelsatz?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7799