Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis
Der Umfangswinkelsatz, oder auch Peripheriewinkelsatz genannt, ist ein Satz in der Geometrie. Es handelt sich um ein Dreieck in einem Kreis, welches durch eine feste Sehne, hier die Strecke $\overline{AB}$ und einen beweglichen Punkt $C$ definiert ist. Dabei besagt der Umfangswinkelsatz, dass der Winkel am Punkt $C$ immer gleich groß ist.

Wir sehen an der oberen Abbildung die Strecke $\overline{AB}$, die eine feste Sehne im Kreis ist. Der Punkt $C$ wurde nun auf der Kreislinie bewegt. Der Winkel an dem Punkt (hier $\gamma$) verändert sich nicht, seine Größe ist immer gleich.
Was sagt der Umfangwinkelsatz aus?
Merke
Merke
Der Umfangswinkelsatz besagt, dass der Umfangswinkel zur selben Kreissehne gleich groß ist.
Dieser Tatbestand kann bewiesen werden. Schauen wir uns den Beweis einmal an:
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Beweis des Umfangwinkelsatz
Um den Umfangswinkelsatz zu beweisen, müssen wir zunächst beweisen, dass der Mittelpunktswinkel doppelt so groß ist wie der Umfangswinkel. Die folgende Abbildung veranschaulicht dies:

Wir sehen, dass der Mittelpunktswinkel $\beta = 68,22^\circ$ doppelt so groß ist, wie der Umfangswinkel $\alpha = 34,11^\circ$. Dies gilt es zu beweisen! Denn wenn wir dies bewiesen haben, haben wir auch den Umfangswinkelsatz bewiesen. Der Winkel am Mittelpunkt verändert sich beim Bewegen vom Punkt $C$ nicht. Dennoch bleibt der Winkel im Punkt C halb so groß wie der Winkel am Mittelpunkt.
Wir ziehen vom Mittelpunkt zum Punkt $C$ eine Gerade und erhalten drei Dreiecke mit mehreren Winkeln:

Wir wissen, dass die Innenwinkelsumme jedes beliebigen Dreiecks $180^\circ$ groß ist. Unser Ziel ist es zu beweisen, dass $\beta = 2\alpha$.
Starten wir mit der Bestimmung von $\delta $ und $\zeta$:
$180^\circ= \epsilon + 2\cdot \delta$
$\epsilon = 180^\circ -2 \delta$
$\zeta = 180^\circ -2 \gamma$
Wir wissen, dass in einem Kreis die Winkelsumme insgesamt aus $360^\circ$ beträgt. Dies wenden wir an:
$360^\circ = \epsilon + \zeta + \beta$
$\beta= 360^\circ -\epsilon - \zeta$
Setzen wir nun die zuvor bestimmten Terme für $\delta $ und $\zeta$ ein:
$\beta= 360^\circ - (180^\circ -2 \delta) - (180^\circ -2 \gamma)$
$\beta= 360^\circ - 180^\circ + 2\delta -180^\circ + 2 \gamma)$
$\beta = 2\delta + 2\gamma$
$\beta = 2 (\delta + \gamma)$
$\beta = 2 \alpha$
Damit ist bewiesen, dass der Umfangswinkel immer halb so groß ist wie der Mittelwinkel. Daraus können wir schließen, dass der Umfangswinkel immer gleich groß ist, da sich der Mittelpunktswinkel beim Bewegen von Punkt $C$ nicht verändert.
Mit den Übungsaufgaben kannst du dein neues Wissen jetzt testen. Viel Erfolg dabei!
Teste dein Wissen!
Wie groß ist der Winkel $\alpha$?
Die Winkelsumme eines Kreises beträgt:
Wie groß ist der gesuchte Winkel $\alpha$?
Was besagt der Umfangswinkelsatz?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema



















Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen