Mathematik > Geometrie

Punktspiegelung - Schritt für Schritt erklärt

Punktspiegelung - Schritt für Schritt erklärt! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Text wird erklärt, wie eine Figur an einem Punkt gespiegelt wird.

Punktspiegelung

Bei der Punktspiegelung wird eine Figur um einen Spiegelpunkt gedreht. Schauen wir uns dies in der nachfolgenden Abbildung einmal an:

punktspiegelung 1
Abbildung: Dreieck am Punkt gespiegelt

Die neu entstandenen Punkte werden Bildpunkte genannt und mit einem Apostroph versehen.

Wir sehen, dass das Dreieck $A'B'C'$ mit dem ursprünglichen Dreieck $ABC$ deckungsgleich ist. Dies bedeutet, dass wir das Dreieck $A'B'C'$ so verschieben und drehen können, dass es genau auf das Dreiecke $ABC$ passt. In der nachfolgenden Abbildung ist dies dargestellt:

punktspiegelung_2_neu
Abbildung: Das punktgespiegelte Dreieck und das ursprüngliche Dreieck sind deckungsgleich

Schauen wir uns nun an, wie wir eine Figur an einem Punkt spiegeln können:

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Vorgehensweise

1. Mit dem Geodreieck

Wir haben den Spiegelpunkt und das Viereck gegeben.

punktspiegelung 3
Abbildung: Spiegelpunkt und Viereck

Die Punkte des Vierecks werden zunächst separat gespiegelt und dann werden die Bildpunkte zur Bildfigur verbunden. Um die Punktspiegelung durchführen zu können, benötigst du ein Lineal oder ein Geodreieck.

Lege das Geodreieck mit dem Nullpunkt auf den Spiegelpunkt und drehe es so, dass es einen Punkt des Vierecks berührt.
Nun wird abgelesen, wie weit der Punkt vom Spiegelpunkt entfernt ist. Der gleiche Abstand muss auf der anderen Seite des Spiegelpunktes markiert werden. Benenne anschließend den Bildpunkt deines Punktes, damit du später nicht durcheinanderkommst.

punktspiegelung 8
Abbildung: Geodreieck mit Nullpunkt auf Spiegelpunkt

Alle anderen Punkte musst du auf die gleiche Weise spiegeln. Am Ende werden die gespiegelten Punkte in alphabetischer Reihenfolge verbunden.

punktspiegelung 4
Abbildung: gespiegeltes Viereck

Die Vorgehensweise zusammengefasst:

Methode

Methode

Hier klicken zum Ausklappen
  1. Das Geodreieck mit dem Nullpunkt auf den Spiegelpunkt legen und so verschieben, dass es den zu spiegelnden Punkt berührt.

  2. Den Abstand zwischen dem Punkt und dem Spiegelpunkt ablesen und auf der anderen Seite markieren.

  3. Den neu markierten Punkt - Bildpunkt - benennen. Er wird mit dem gleichen Buchstaben und einem Apostroph gekennzeichnet.

2. Mit dem Zirkel und einem Lineal

Wenn wir kein Geodreieck benutzen dürfen, ist die Punktspiegelung ein bisschen aufwendiger. Schauen wir uns dies an einem Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Der Punkt $P$ ist gegeben und soll mit Zirkel und Lineal am Spiegelpunkt $S$ gespiegelt werden. Das Lineal dient nur dazu, gerade Linien zeichnen zu können und darf nicht als Längenmessgerät verwendet werden. Denn sonst könnten wir wie oben beschrieben vorgehen.

punktspiegelung 5
Abbildung: Punkt $P$ und Spiegelpunkt $S$
Als Erstes wird eine Gerade durch die beiden Punkte gezogen. Sie muss weit über den Punkt $S$, den Spiegelpunkt, hinausgehen.
Punktspiegelung 6
Abbildung: Gerade durch die beiden Punkte
Nun brauchen wir den Zirkel. Der Radius wird so eingestellt, dass er genauso groß ist wie der Abstand zwischen den beiden Punkten. Setze dafür die Zirkelspitze auf den Punkt $S$ und stelle dann den Zirkel so ein, dass er den Punkt $P$ berührt. Nun ziehe einen Kreis um den Punkt $S$. Der Kreis schneidet die zuvor gezeichnete Gerade in zwei Punkten: Einmal im Punkt $P$ und einmal im Bildpunkt $P'$. Der zweite Schnittpunkt ist also unser gesuchter Bildpunkt $P'$.

$P'$" alt="punktspiegelung 7" src="https://media.studienkreis.de/assets/courses/media/punktspiegelung-7-0-ca.png">
Abbildung: Punkt $P$ an Punkt $S$ gespiegelt $\rightarrow~P'$

Vorgehensweise 

Methode

Methode

Hier klicken zum Ausklappen
  1. Eine lange Gerade durch den Punkte $P$ und den Spiegelpunkt $S$ zeichnen. 

  2. Einen Kreis um den Spiegelpunkt zeichnen. Der Radius ist die Länge des Abstandes zwischen Punkt $P$ und dem Spiegelpunkt $S$.

  3. Der Kreis schneidet die zuvor gezeichnete Gerade in zwei Punkten: Ein Schnittpunkt ist der Punkt $P$ und der andere Schnittpunkt ist der Bildpunkt $P'$.

Mit den Übungsaufgaben kannst du dein Wissen zur Punktspiegelung überprüfen. Viel Erfolg dabei!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

In welcher Abbildung wurde richtig vorgegangen?

Teste dein Wissen!

In welcher Abbildung wurde das Dreieck richtig gespiegelt?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie gehst du vor, wenn du eine Figur an einem Punkt spiegeln möchtest?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Sätze sind korrekt?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

15.05.2023 , von Rainer W.
Ich find die Nachhilfe bisher sehr gut. Mein Lehrer kann mir meine Fragen sehr gut erklären
15.05.2023 , von Giovanna B.
Kurzfristige Terminänderungen sind möglich. Feedback und Kommunikation stimmen.
15.05.2023 , von Daniela M.
Meine Tochter besucht die Nachhilfe gern, wird immer wieder neu motiviert und versteht den Unterrichtsstoff (Mathe) inzwischen viel besser. Wir sind sehr zufrieden!
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Dreieck mit H?he
Höhensatz des Euklid verstehen und beweisen
Kathetensatz des Euklid
Kathetensatz des Euklid - Was ist das?
Viereck mit zwei rechten Winkeln.
Satz des Pythagoras - Textaufgabe mit Lösungen
Rechtwinkliges Dreieck.
Was ist der Satz des Pythagoras? - Formel und Beweis
Gr??en im Kegelstumpf
Kegelstumpf: Höhe, Volumen und Flächen berechnen
Aufbau eines Kreiskegels.
Kegel: Oberfläche und Volumen berechnen
Kugelsegment
Kugelsegment und Kugelausschnitt
Der Hexaeder
Was sind platonische Körper?
Pyramidenstumpf
Pyramidenstumpf: Volumen und Oberfläche berechnen
Der Quader.
Quader und Würfel: Formeln für Fläche und Volumen
Die Kugel.
Umfang, Oberfläche und Volumen einer Kugel: Formeln
Beispiel zweier Prismen
Was ist ein Prisma? - Volumen und Oberfläche berechnen
Pyramiden im Quader.
Pyramide: Oberfläche und Volumen berechnen
Aufbau eines Zylinders
Zylinder: Oberfläche und Volumen berechnen
scheitelwinkel-2
Winkelarten und Winkeltypen im Überblick
winkel-5
Winkel messen mit einem Geodreieck
winkel-alltag
Was ist ein Winkel und welche Winkelarten gibt es?
winkel zeichnen 4
Winkel zeichnen mit einem Geodreieck
innenwinkelsumme-dreieck
Winkel berechnen - Formel und Aufgaben
uebersicht-winkel.
Winkelarten und Winkeltypen bestimmen
Achsenspiegelung
Achsenspiegelung: Punkte an einer Achse spiegeln
diagonale
Diagonale von Vierecken und Quadraten berechnen
gerade
Gerade, Strecke, Strahl zeichnen - Einführung in die Geometrie
sssdreieckskonstruktion3
Kreis und Dreieck mithilfe eines Zirkels zeichnen
lot faellen 1
Lot fällen - Schritt für Schritt erklärt
mittelsenkrechte-halbieren einer strecke
Wie zeichnet man eine Mittelsenkrechte?
parallel Geraden
So zeichnest du parallele Geraden
punktspiegelung 3
Punktspiegelung - Schritt für Schritt erklärt
Punktspiegelung_zentrum_2
Spiegelpunkt und Spiegelachse konstruieren
punktspiegelung_2_neu
Unterscheidung Achsen- und Punktspiegelung
winkelhalbiente_7
Winkelhalbierende konstruieren und zeichnen
umfangswinkelsatz_beweis2
Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis
sssdreieckskonstruktion3
Kongruenzsätze: Dreiecke konstruieren - Erklärung
Bitte Beschreibung eingeben
Kosinus - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Sinus - Rechnen mit der Winkelfunktion
Bitte Beschreibung eingeben
Tangens - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Winkelfunktionen in rechtwinkligen Dreiecken
tricks mit 10
Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen
tan-1
Winkelfunktionen: Textaufgabe mit Lösung
leicht erkl?rt text 1
Winkelfunktionen: Sinus, Cosinus & Tangens (Formeln)
Zwei ?hnliche Dreiecke
Wie lauten die Kongruenzsätze?
Symmetrie Achsensymmetrie anhand eines Vielecks
Symmetrie von Figuren: Erklärung und Abbildungen
Strahlens?tze Anwendungsbeispiele
Strahlensätze - Aufgaben mit Lösungen
Zweiter Strahlensatz
Erster und zweiter Strahlensatz: Formel und Erklärung
Zentrische Streckung Beispiel
Zentrische Streckung - Einführung & Erklärung
Allgemeine Darstellung eines Dreiecks
Flächeninhalt und Umfang von Dreiecken berechnen
Parallelogramm mit der H?he ha
Flächeninhalt und Umfang eines Parallelogramms berechnen
Fl?cheninhalt eines Parallelogramms
Trapez: Flächeninhalt und Umfang berechnen
drache_bezeichnungen
Drachenviereck - Flächeninhalt und Konstruktion
Von links nach rechts: Quadrat, Parallelogramm, Dreieck, Trapez
Figuren und Flächen in der Mathematik - Eine Einführung
Strecke zwischen A und B
Was ist eine Strecke, eine Halbgerade und eine Gerade?
Eine allgemeine Raute
Raute - Eigenschaften, Flächeninhalt, Umfang berechnen
vielecke
Regelmäßige Vielecke konstruieren und berechnen
zusammengestzte__flaechen_beispiel
Zusammengesetzte Flächen - Flächeninhalt und Umfang
Quadrat (links) und Rechteck (rechts)
Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen
Dreieck mit verl?ngerten Seiten
Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt
Umkreismittelpunkt eines Dreiecks
Besondere & ausgezeichnete Punkte im Dreieck
Beispiel f?r ein gleichseitiges Dreieck
Dreiecksarten - Namen und Eigenschaften
Schnittpunkt der Winkelhalbierenden
So konstruierst du Umkreis und Inkreis eines Dreiecks
Dreieck mit H?he
Diese Formeln brauchst du zum Dreieck berechnen!
Rechteck 6 x 4
Dimensionen der Geometrie: Flächen und ihre Berechnung
Schr?gbild eines W?rfels
Körpernetze erstellen - Beispiele und Übungsaufgaben
Schr?gbild eines allgemeinen Quaders
Schrägbilder einfacher Figuren zeichnen
Allgemeines Viereck
Vierecke - Eigenschaften und Arten
Schr?gbild eines allgemeinen Quaders
Dimensionen der Geometrie: Volumen berechnen
Schr?gbild eines allgemeinen Quaders
Quader: Fläche und Volumen berechnen
regelm??iges Oktagon
Vielecke: Arten und Eigenschaften
geraden_kreis
Geraden, Strecken und Winkel am Kreis
pi-beweis
Was ist die Kreiszahl Pi? - Erklärung und Herleitung
satz-des-thales
Satz des Thales - Erklärung und Beweis
kreis-1
Kreis - So berechnest du Flächeninhalt und Umfang!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7824