Mathematik > Geometrie

Winkel berechnen - Formel und Aufgaben

Inhaltsverzeichnis:

In diesem Lerntext erklären wir dir, mit welchen Tricks du Winkel berechnen kannst. Dazu werden wir in einem Dreieck Winkel berechnen und auch ein einem Viereck.

Winkelberechnung: Innenwinkelsumme berechnen

Die Innenwinkelsumme beschreibt, wie groß alle Winkel innerhalb einer geometrischen Figur zusammengerechnet sind.
So beträgt zum Beispiel die Innenwinkelsumme eines Dreiecks immer $180^\circ$ und die eines Vierecks $360^\circ$. Diese Erkenntnis kann uns helfen, wenn wir fehlende Winkel ausrechnen wollen.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Man benötigt zwei Winkelangaben in einem Dreieck und drei Winkelangaben in einem Viereck, um jeweils den fehlenden Winkel zu berechnen.

Innenwinkelsumme Dreieck

innenwinkelsumme-dreieck
Innenwinkelsumme Dreieck

Wir können alle Winkel in diesem Dreieck zusammenrechnen und erhalten: $73^\circ+77^\circ+30^\circ = 180^\circ$. Das war auch schon die "Formel" mit der du Winkel im Dreieck zusammenrechnest.

Merke

Merke

Hier klicken zum Ausklappen

In jedem Dreieck ergeben die Winkel zusammen immer $180^\circ$.

Innenwinkelsumme Viereck

innenwinkelsumme-viereck
Innenwinkelsumme Viereck

Wir können auch hier alle Winkel dieses Vierecks zusammenrechnen. $95^\circ+108^\circ+97^\circ+60^\circ = 360^\circ$. Wir sehen, dass alle Winkel zusammen $360^\circ$ ergeben. Dieses Ergebnis würden wir bei jedem beliebigen Viereck erhalten.

Merke

Merke

Hier klicken zum Ausklappen

In jedem Viereck ergeben die Winkel zusammen immer $360^\circ$.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispielaufgabe: Berechnen eines Winkels mit Hilfe der Innenwinkelsumme

innenwinkelsummer-dreieck-aufgabe
Dreieck, Winkel $\alpha$ gefragt

Wir haben dieses Dreieck gegeben und sollen den fehlenden Winkel $\alpha$ berechnen. Wir wissen, dass alle Winkel zusammen $180^\circ$ groß sein müssen. Wenn wir nun die beiden angegebenen Winkel von $180^\circ$ abziehen, erhalten wir die Größe des gesuchten Winkels $\alpha$.

$180^\circ = \alpha +\beta +\gamma$
$180^\circ =\alpha+ 73^\circ+80^\circ$                   $|-73^\circ -80^\circ$
$\alpha = 180^\circ -73^\circ -80^\circ = 27^\circ $

Der Winkel $\alpha$ ist $27^\circ$ groß.

Formeln zu Sinus, Kosinus und Tangens

Die Größe eines Winkels in einem rechtwinkligen Dreieck kann mit den Winkelfunktionen Sinus, Kosinus und Tangens berechnet werden. Dabei sind nicht die anderen Winkelgrößen angegeben, sondern die Längen der Seiten des Dreiecks.
Um die Winkelfunktionen anwenden zu können, müssen wir zunächst die Seiten eines Dreiecks benennen können. Die Seiten eines Dreiecks werden auch Kathete genannt und jede Seite hat eine spezielle Bezeichnung:

leicht erklärt text 1

Die Hypotenuse ist immer die längste Seite eines rechtwinkligen Dreiecks. Sie liegt gegenüber von dem größten Winkel des rechtwinkligen Dreiecks, dem rechten Winkel. Die Gegen- und Ankathete beziehen sich beide auf einen der beiden spitzen Winkel. Hier ist dieser $\beta$. Die Gegenkathete ist gegenüber von dem gegebenen Winkel (hier $\beta$) und die Ankathete liegt direkt an dem Winkel dran (hier $\beta$).

Wenn nun zwei Seitenlängen gegeben sind können wir mit Sinus, Kosinus oder Tangens die dazugehörige Winkelgröße berechnen. Schauen wir uns hier die drei Formeln an:

Merke

Merke

Hier klicken zum Ausklappen

$Sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$Kosinus (\alpha) = \frac{Ankathete}{Hypotenuse}$

$Tangens (\alpha) = \frac{Gegenkathete}{Ankathete}$

Winkelberechnung mit Sinus, Kosinus und Tangens

Methode

Methode

Hier klicken zum Ausklappen
  1. Benenne die Katheten.
  2. Was ist gesucht und was ist gegeben? Markiere dir dies in einer kleinen Skizze.
  3. Mit Hilfe der Skizze musst du nun überlegen, mit welcher Winkelfunktion du arbeiten kannst.
  4. Als letztes musst du nur noch die Angaben ausrechnen.

Schauen wir uns eine Beispielaufgabe zur Berechnung eines Winkels im Dreieck an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Winkel

Um die Größe des Winkels α zu berechnen, musst du zuerst das Verhältnis von Gegenkathete zu Hypotenuse bestimmen. Also wird die Gegenkathete durch die Hypotenuse geteilt und das Ergebnis wird in die Umkehrfunktion von Sinus, also in $\sin^{−1}$, eingesetzt.

Beispiel

$\alpha=~?$,  Hypotenuse $=6cm$,  Gegenkathete $=3cm$


$\sin(\alpha)=\frac{Gegenkathete}{Hypotenuse}$

$\sin(\alpha)=\frac{3cm}{6cm}=0,5$

$\alpha=\sin^{−1}(0,5)=30^\circ$


Damit beträgt der Winkel $\alpha$ in dem Dreieck $30 ^\circ $.

Du weißt jetzt, wie du Winkel mithilfe der Sinus-, Kosinus- und Tangensfunktionen berechnen kannst. Du hast auch gelernt, dass es eine Innenwinkelsumme von Dreiecken und Vierecken gibt. Dein neu erlerntes Wissen kannst du nun in unseren Übungsaufgaben zu Winkeln und Winkelsummen im Dreieck und Viereck überprüfen. Viel Erfolg dabei!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne den Winkel $\alpha$ im rechtwinkligen Dreieck!
Die Hypotenuse ist $5cm$ und die Ankathete $3cm$ groß.

Teste dein Wissen!

Wie groß sind die Innenwinkelsummen eines Dreiecks und eines Vierecks?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Mit welcher Kenntnis können wir ganz einfach einen Winkel berechnen, wenn die zwei anderen Winkelgrößen in einem Dreieck gegeben sind?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Ein Dreieck hat drei Winkel, $\alpha$, $\beta$ und $\gamma$.
Die Winkel $\alpha$ und $\beta$ sind gegeben, $\gamma$ ist gesucht.
$\alpha=53^\circ$, $\beta=22^\circ$
Berechne die Winkelgröße $\gamma$!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

24.11.2022 , von Erdogan H.
Einfach Toppppp !!!!!!
24.11.2022 , von Asiye K.
Sehr hilfreich und kompetent. Noten verbessert.
24.11.2022 , von Ulrich O.
Ich fühle mich gut aufgehoben im Studienkreis. Besonders Frau Ritter gibt sich sehr viel Mühe alles zur Zufriedenheit zu erledigen. Einfach super.
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Dreieck mit H?he
Höhensatz des Euklid verstehen und beweisen
Kathetensatz des Euklid
Kathetensatz des Euklid - Was ist das?
Viereck mit zwei rechten Winkeln.
Satz des Pythagoras - Textaufgabe mit Lösungen
Rechtwinkliges Dreieck.
Was ist der Satz des Pythagoras? - Formel und Beweis
Gr??en im Kegelstumpf
Kegelstumpf: Höhe, Volumen und Flächen berechnen
Aufbau eines Kreiskegels.
Kegel: Oberfläche und Volumen berechnen
Kugelsegment
Kugelsegment und Kugelausschnitt
Der Hexaeder
Was sind platonische Körper?
Pyramidenstumpf
Pyramidenstumpf: Volumen und Oberfläche berechnen
Der Quader.
Quader und Würfel: Formeln für Fläche und Volumen
Die Kugel.
Umfang, Oberfläche und Volumen einer Kugel: Formeln
Beispiel zweier Prismen
Was ist ein Prisma? - Volumen und Oberfläche berechnen
Pyramiden im Quader.
Pyramide: Oberfläche und Volumen berechnen
Aufbau eines Zylinders
Zylinder: Oberfläche und Volumen berechnen
scheitelwinkel-2
Winkelarten und Winkeltypen im Überblick
winkel-5
Winkel messen mit einem Geodreieck
winkel-alltag
Was ist ein Winkel und welche Winkelarten gibt es?
winkel zeichnen 4
Winkel zeichnen mit einem Geodreieck
innenwinkelsumme-dreieck
Winkel berechnen - Formel und Aufgaben
uebersicht-winkel.
Winkelarten und Winkeltypen bestimmen
Achsenspiegelung
Achsenspiegelung: Punkte an einer Achse spiegeln
diagonale
Diagonale von Vierecken und Quadraten berechnen
gerade
Gerade, Strecke, Strahl zeichnen - Einführung in die Geometrie
sssdreieckskonstruktion3
Kreis und Dreieck mithilfe eines Zirkels zeichnen
lot faellen 1
Lot fällen - Schritt für Schritt erklärt
mittelsenkrechte-halbieren einer strecke
Wie zeichnet man eine Mittelsenkrechte?
parallel Geraden
So zeichnest du parallele Geraden
punktspiegelung 3
Punktspiegelung - Schritt für Schritt erklärt
Punktspiegelung_zentrum_2
Spiegelpunkt und Spiegelachse konstruieren
punktspiegelung_2_neu
Unterscheidung Achsen- und Punktspiegelung
winkelhalbiente_7
Winkelhalbierende konstruieren und zeichnen
umfangswinkelsatz_beweis2
Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis
sssdreieckskonstruktion3
Kongruenzsätze: Dreiecke konstruieren - Erklärung
Bitte Beschreibung eingeben
Kosinus - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Sinus - Rechnen mit der Winkelfunktion
Bitte Beschreibung eingeben
Tangens - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Winkelfunktionen in rechtwinkligen Dreiecken
tricks mit 10
Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen
tan-1
Winkelfunktionen: Textaufgabe mit Lösung
leicht erkl?rt text 1
Winkelfunktionen: Sinus, Cosinus & Tangens (Formeln)
Zwei ?hnliche Dreiecke
Wie lauten die Kongruenzsätze?
Symmetrie Achsensymmetrie anhand eines Vielecks
Symmetrie von Figuren: Erklärung und Abbildungen
Strahlens?tze Anwendungsbeispiele
Strahlensätze - Aufgaben mit Lösungen
Zweiter Strahlensatz
Erster und zweiter Strahlensatz: Formel und Erklärung
Zentrische Streckung Beispiel
Zentrische Streckung - Einführung & Erklärung
Allgemeine Darstellung eines Dreiecks
Flächeninhalt und Umfang von Dreiecken berechnen
Parallelogramm mit der H?he ha
Flächeninhalt und Umfang eines Parallelogramms berechnen
Fl?cheninhalt eines Parallelogramms
Trapez: Flächeninhalt und Umfang berechnen
drache_bezeichnungen
Drachenviereck - Flächeninhalt und Konstruktion
Von links nach rechts: Quadrat, Parallelogramm, Dreieck, Trapez
Figuren und Flächen in der Mathematik - Eine Einführung
Strecke zwischen A und B
Was ist eine Strecke, eine Halbgerade und eine Gerade?
Eine allgemeine Raute
Raute - Eigenschaften, Flächeninhalt, Umfang berechnen
vielecke
Regelmäßige Vielecke konstruieren und berechnen
zusammengestzte__flaechen_beispiel
Zusammengesetzte Flächen - Flächeninhalt und Umfang
Quadrat (links) und Rechteck (rechts)
Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen
Dreieck mit verl?ngerten Seiten
Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt
Umkreismittelpunkt eines Dreiecks
Besondere & ausgezeichnete Punkte im Dreieck
Beispiel f?r ein gleichseitiges Dreieck
Dreiecksarten - Namen und Eigenschaften
Schnittpunkt der Winkelhalbierenden
So konstruierst du Umkreis und Inkreis eines Dreiecks
Dreieck mit H?he
Diese Formeln brauchst du zum Dreieck berechnen!
Rechteck 6 x 4
Dimensionen der Geometrie: Flächen und ihre Berechnung
Schr?gbild eines W?rfels
Körpernetze erstellen - Beispiele und Übungsaufgaben
Schr?gbild eines allgemeinen Quaders
Schrägbilder einfacher Figuren zeichnen
Allgemeines Viereck
Vierecke - Eigenschaften und Arten
Schr?gbild eines allgemeinen Quaders
Dimensionen der Geometrie: Volumen berechnen
Schr?gbild eines allgemeinen Quaders
Quader: Fläche und Volumen berechnen
regelm??iges Oktagon
Vielecke: Arten und Eigenschaften
geraden_kreis
Geraden, Strecken und Winkel am Kreis
pi-beweis
Was ist die Kreiszahl Pi? - Erklärung und Herleitung
satz-des-thales
Satz des Thales - Erklärung und Beweis
kreis-1
Kreis - So berechnest du Flächeninhalt und Umfang!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung

In einem unverbindlichen Beratungsgespräch lernen wir uns kennen und Ihr Kind kann unsere Profi-Nachhilfe in 2 Probestunden gratis testen.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8575