Mathematik > Geometrie

Winkel berechnen - Formel und Aufgaben

Inhaltsverzeichnis:

In diesem Lerntext erklären wir dir, mit welchen Tricks du Winkel berechnen kannst. Dazu werden wir in einem Dreieck Winkel berechnen und auch ein einem Viereck.

Winkelberechnung: Innenwinkelsumme berechnen

Die Innenwinkelsumme beschreibt, wie groß alle Winkel innerhalb einer geometrischen Figur zusammengerechnet sind.
So beträgt zum Beispiel die Innenwinkelsumme eines Dreiecks immer $180^\circ$ und die eines Vierecks $360^\circ$. Diese Erkenntnis kann uns helfen, wenn wir fehlende Winkel ausrechnen wollen.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Man benötigt zwei Winkelangaben in einem Dreieck und drei Winkelangaben in einem Viereck, um jeweils den fehlenden Winkel zu berechnen.

Innenwinkelsumme Dreieck

innenwinkelsumme-dreieck
Innenwinkelsumme Dreieck

Wir können alle Winkel in diesem Dreieck zusammenrechnen und erhalten: $73^\circ+77^\circ+30^\circ = 180^\circ$. Das war auch schon die "Formel" mit der du Winkel im Dreieck zusammenrechnest.

Merke

Merke

Hier klicken zum Ausklappen

In jedem Dreieck ergeben die Winkel zusammen immer $180^\circ$.

Innenwinkelsumme Viereck

innenwinkelsumme-viereck
Innenwinkelsumme Viereck

Wir können auch hier alle Winkel dieses Vierecks zusammenrechnen. $95^\circ+108^\circ+97^\circ+60^\circ = 360^\circ$. Wir sehen, dass alle Winkel zusammen $360^\circ$ ergeben. Dieses Ergebnis würden wir bei jedem beliebigen Viereck erhalten.

Merke

Merke

Hier klicken zum Ausklappen

In jedem Viereck ergeben die Winkel zusammen immer $360^\circ$.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispielaufgabe: Berechnen eines Winkels mit Hilfe der Innenwinkelsumme

innenwinkelsummer-dreieck-aufgabe
Dreieck, Winkel $\alpha$ gefragt

Wir haben dieses Dreieck gegeben und sollen den fehlenden Winkel $\alpha$ berechnen. Wir wissen, dass alle Winkel zusammen $180^\circ$ groß sein müssen. Wenn wir nun die beiden angegebenen Winkel von $180^\circ$ abziehen, erhalten wir die Größe des gesuchten Winkels $\alpha$.

$180^\circ = \alpha +\beta +\gamma$
$180^\circ =\alpha+ 73^\circ+80^\circ$                   $|-73^\circ -80^\circ$
$\alpha = 180^\circ -73^\circ -80^\circ = 27^\circ $

Der Winkel $\alpha$ ist $27^\circ$ groß.

Formeln zu Sinus, Kosinus und Tangens

Die Größe eines Winkels in einem rechtwinkligen Dreieck kann mit den Winkelfunktionen Sinus, Kosinus und Tangens berechnet werden. Dabei sind nicht die anderen Winkelgrößen angegeben, sondern die Längen der Seiten des Dreiecks.
Um die Winkelfunktionen anwenden zu können, müssen wir zunächst die Seiten eines Dreiecks benennen können. Die Seiten eines Dreiecks werden auch Kathete genannt und jede Seite hat eine spezielle Bezeichnung:

leicht erklärt text 1

Die Hypotenuse ist immer die längste Seite eines rechtwinkligen Dreiecks. Sie liegt gegenüber von dem größten Winkel des rechtwinkligen Dreiecks, dem rechten Winkel. Die Gegen- und Ankathete beziehen sich beide auf einen der beiden spitzen Winkel. Hier ist dieser $\beta$. Die Gegenkathete ist gegenüber von dem gegebenen Winkel (hier $\beta$) und die Ankathete liegt direkt an dem Winkel dran (hier $\beta$).

Wenn nun zwei Seitenlängen gegeben sind können wir mit Sinus, Kosinus oder Tangens die dazugehörige Winkelgröße berechnen. Schauen wir uns hier die drei Formeln an:

Merke

Merke

Hier klicken zum Ausklappen

$Sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$Kosinus (\alpha) = \frac{Ankathete}{Hypotenuse}$

$Tangens (\alpha) = \frac{Gegenkathete}{Ankathete}$

Winkelberechnung mit Sinus, Kosinus und Tangens

Methode

Methode

Hier klicken zum Ausklappen
  1. Benenne die Katheten.
  2. Was ist gesucht und was ist gegeben? Markiere dir dies in einer kleinen Skizze.
  3. Mit Hilfe der Skizze musst du nun überlegen, mit welcher Winkelfunktion du arbeiten kannst.
  4. Als letztes musst du nur noch die Angaben ausrechnen.

Schauen wir uns eine Beispielaufgabe zur Berechnung eines Winkels im Dreieck an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Winkel

Um die Größe des Winkels α zu berechnen, musst du zuerst das Verhältnis von Gegenkathete zu Hypotenuse bestimmen. Also wird die Gegenkathete durch die Hypotenuse geteilt und das Ergebnis wird in die Umkehrfunktion von Sinus, also in $\sin^{−1}$, eingesetzt.

Beispiel

$\alpha=~?$,  Hypotenuse $=6cm$,  Gegenkathete $=3cm$


$\sin(\alpha)=\frac{Gegenkathete}{Hypotenuse}$

$\sin(\alpha)=\frac{3cm}{6cm}=0,5$

$\alpha=\sin^{−1}(0,5)=30^\circ$


Damit beträgt der Winkel $\alpha$ in dem Dreieck $30 ^\circ $.

Du weißt jetzt, wie du Winkel mithilfe der Sinus-, Kosinus- und Tangensfunktionen berechnen kannst. Du hast auch gelernt, dass es eine Innenwinkelsumme von Dreiecken und Vierecken gibt. Dein neu erlerntes Wissen kannst du nun in unseren Übungsaufgaben zu Winkeln und Winkelsummen im Dreieck und Viereck überprüfen. Viel Erfolg dabei!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne den Winkel $\alpha$ im rechtwinkligen Dreieck!
Die Hypotenuse ist $5cm$ und die Ankathete $3cm$ groß.

Teste dein Wissen!

Wie groß sind die Innenwinkelsummen eines Dreiecks und eines Vierecks?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Mit welcher Kenntnis können wir ganz einfach einen Winkel berechnen, wenn die zwei anderen Winkelgrößen in einem Dreieck gegeben sind?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Ein Dreieck hat drei Winkel, $\alpha$, $\beta$ und $\gamma$.
Die Winkel $\alpha$ und $\beta$ sind gegeben, $\gamma$ ist gesucht.
$\alpha=53^\circ$, $\beta=22^\circ$
Berechne die Winkelgröße $\gamma$!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Corinna O., vom 2019-10-17
alles gut
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8575