Suche
Kontakt
Mathematik > Terme und Gleichungen

Linearfaktorzerlegung quadratischer Gleichungen

Linearfaktorzerlegung quadratischer Gleichungen | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Eine quadratische Gleichung kann in ihre Linearfaktoren zerlegt werden. Wie der Name Faktor schon sagt, wird die quadratische Gleichung dabei in ein Produkt umgeformt. Die allgemeine Form einer quadratischen Gleichung $ax^2+bx+c=0$ kann also in die Produktform $a\cdot (x-x_1)\cdot (x-x_2)=0 $ überführt werden.

Merke

Bei der Zerlegung in Linearfaktoren wird der quadratische Term in ein Produkt umgeformt:

$ax^2+bx+c ~~~\rightarrow~~~a\cdot (x-x_1)\cdot (x-x_2)$

$x_1$ und $x_2$ sind die Lösungen der quadratischen Gleichung $ax^2+bx+c=0$ und

$(x-x_1)$ und $(x-x_2)$ sind die beiden Linearfaktoren.

$x_1$ und $x_2$ sind dabei die Nullstellen der quadratischen Funktion $f(x)=ax^2+bx+c$ bzw. die Lösungen der quadratischen Gleichung $ax^2+bx+c=0$. Diese können wir entweder mit der p-q-Formel, der Mitternachtsformel oder auch mit dem Satz von Vieta bestimmen.

Schauen wir uns ein Beispiel an:

Beispiele - Linearfaktorzerlegung

Beispiel

Die folgenden quadratischen Gleichungen sollen in ihre Linearfaktoren zerlegt werden.

Beispiel 1:

 $x^2+3x-4=0$ 

Als erstes berechnen wir mit der p-q-Formel die Nullstellen:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$x^2 \textcolor{red}{+3} \cdot x \textcolor{orange}{-4} = 0$

$x_{1/2} = -\frac{\textcolor{red}{3}}{2}\pm \sqrt{(\frac{\textcolor{red}{3}}{2})^2-\textcolor{orange}{-4})}$

$x_{1/2} = -1,5\pm \sqrt{(\frac{9}{4} + 4)}$

$x_{1/2} = -1,5\pm \sqrt{6,25}= -1,5 \pm 2,5$

$x_1= 1$

$x_2 = -4$

Daraus ergeben sich die Linearfaktoren:

$x-1$    und    $x+4$

Die Quadratische Gleichung bzw. Funktion kann sowohl in der Normalform geschrieben werden als auch in der Produktform:

$x^2+3x-4 = 0 ~~\leftrightarrow~~(x-1)\cdot (x+4)=0$

$f(x)=x^2+3x-4~~\leftrightarrow~~f(x)=(x-1)\cdot (x+4)$

 

Beispiel 2:

$f(x)=2x^2-4x-16$

Zunächst setzen wir diese Funktion gleich Null:

$2x^2-4x-16=0$

Anschließend muss der Faktor $\textcolor{turquoise}{a}$ vor unserem $\textcolor{blue}{x^2}$ eliminiert werden, da sonst die p-q-Formel nicht angewendet werden kann. Dazu dividieren wir die Gleichung durch die Zahl 2:

$\textcolor{turquoise}{2}\textcolor{blue}{x^2}-4x-16=0 |:\textcolor{turquoise}{2}$

$x^2-2x-8=0$

Anschließend berechnen wir mit der p-q-Formel die Nullstellen:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$x^2 \textcolor{red}{-2} \cdot x \textcolor{orange}{-8} = 0$

$x_{1/2} = -\frac{\textcolor{red}{-2}}{2}\pm \sqrt{(\frac{\textcolor{red}{-2}}{2})^2-\textcolor{orange}{-8})}$

$x_{1/2} = 1\pm \sqrt{(1) + 8}$

$x_{1/2} = 1\pm \sqrt{9}= 1 \pm 3$

$x_1= 4$

$x_2 = -2$

Daraus ergeben sich die Linearfaktoren:

$x-4$    und    $x+2$

Die Quadratische Gleichung bzw. Funktion kann sowohl in der Normalform geschrieben werden als auch in der Produktform:

$2x^2-4x-16=0~~\leftrightarrow~~x^2-2x-8 = 0 ~~\leftrightarrow~~(x-4)\cdot (x+2)=0$

$f(x)=2x^2-4x-16~~\leftrightarrow~~f(x)=2\cdot (x-4)\cdot (x+2)$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Vorgehensweise - Linearfaktorzerlegung

Im Folgenden fassen wir nun nochmal kurz zusammen, wie du eine quadratische Gleichung in ihre Linearfaktoren zerlegen kannst. Die Vorgehensweise ist nicht schwer. Außerdem kannst du dein Ergebnis am Ende der Rechnung durch eine weitere einfache Rechnung überprüfen.

Methode

  1. Die Nullstellen der quadratischen Gleichung bestimmen.
  2. Die beiden Linearfaktoren notieren: $(x-x_1)$ und $(x-x_2)$
  3. Die Nullstellen in die Form $ (x-x_1)\cdot (x-x_2)$ einsetzen.
  4. Mache eine Probe: Löse die Multiplikation auf und du erhältst die anfangs gegebene Normalform der quadratischen Gleichung.

Anwendung der Linearfaktorzerlegung

Mithilfe der Linearfaktorzerlegung können wir die Normalform einer quadratischen Funktion aufstellen. Auch komplexe Brüche lassen sich mithilfe der Linearfaktorzerlegung kürzen.

Aufstellen der Normalform

Wenn wir die Nullstellen einer Funktion gegeben haben, können wir mithilfe der Linearfaktoren ganz einfach eine Funktionsgleichung aufstellen. Diese können wir dann in die Normalform überführen, indem wir die Klammern ausmultiplizieren.

Beispiel

Die Nullstellen der Funktion sind $-5$ und $1$.

Wir können die Funktionsgleichung mithilfe von Linearfaktoren schreiben:

$ (x-x_1)\cdot (x-x_2) $

$ f(x)=(x-(-5))\cdot (x-1) $

$ f(x)=(x+5)\cdot (x-1) $

Wenn wir die Funktionsgleichung nun in die Normalform überführen wollen, müssen wir lediglich die Klammern ausmultiplizieren (auflösen):

$f(x)= x\cdot x +x\cdot (-1) +5\cdot x +5\cdot (-1)$

$f(x)= x^2-x+5x-5$

$f(x)= x^2+4x-5$

Kürzen von Brüchen

Komplexe Brüche lassen sich mithilfe der Linearfaktorzerlegung vereinfachen.

Beispiel

Folgender Bruch ist gegeben:

$\large{\frac{x^2+4x-5}{x^2+x-2}}$

Bei diesem Bruch können wir nicht kürzen, da wir sowohl im Zähler als auch im Nenner jeweils eine Summe haben. ("In Summen kürzen nur die Dummen.") Daher zerlegen wir beide Funktionen in ihre Linearfaktoren.

Für den Zähler haben wir dies oben schon gemacht:

$x^2+4x-5~~~ \rightarrow~~~ (x+5)\cdot (x-1)$

Um die Nullstellen der unteren Funktion zu ermitteln, wenden wir bei dieser Aufgabe den Satz von Vieta an, da die Zahlenkombination sehr einfach ist. Die Aufgabe kann jedoch auch mit der p-q-Formel gelöst werden.

$1\cdot x^2+ \textcolor{red}{1}\cdot x\textcolor{blue}{-2}$

$x_1+x_2 = -\textcolor{red}{1}$

$x_1\cdot x_2 = \textcolor{blue}{-2}$

Durch Ausprobieren erhalten wir:

$x_1= 1$ und $x_2= -2$

Der Nenner lässt sich mithilfe von Linearfaktoren also auch so schreiben:

$(x-1)\cdot (x-(-2))~~\rightarrow~~(x-1)\cdot (x+2)$

Schreiben wir nun sowohl den Zähler des Bruches als auch den Nenner des Bruches in der Produktschreibweise, also mithilfe von Linearfaktoren, so können wir den Bruch nun kürzen, da nun ein Produkt vorliegt (und keine Summe mehr).

$\large{\frac{x^2+4x-5}{x^2+x-2} = \frac{(x+5)\cdot (x-1)}{(x-1)\cdot (x+2)}=\frac{(x+5)\cdot \cancel{(x-1)}}{\cancel{(x-1)}\cdot (x+2)}= \frac{x+5}{x+2}} $

Dank der Linearfaktorzerlegung haben wir den komplizierten Bruch vereinfacht.

Mit den Übungsaufgaben kannst du dein Wissen zu der Linearfaktorzerlegung vertiefen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie kann der Bruch vereinfacht werden?
$\large{\frac{x^2+x-2}{x^2-3x+2}}$

Teste dein Wissen!

Zerlege folgende Gleichung $x^2-3x+2 = 0$ in ihre Linearfaktoren. Welche Produktform trifft zu?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Zerlege folgende Gleichung $x^2+4x-5 = 0$ in ihre Linearfaktoren. Welche Produktform trifft zu?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie kann die Funktion $f(x) = x^2+5x+4$ in die Produktform umgeformt werden? Kreuze das korrekte Ergebnis an.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

17.11.2024 , von Katja J.
Sehr gute Organisation (Köln-Emmastrasse), gute u sympatische Lehrkräfte, Flexibilität, wir konnten die Gruppen zB testen und uns dann entscheiden
15.11.2024
Wir sind sowohl mit der Beratung und Organisation zufrieden, als auch mit dem ausgesuchten Nachhilfelehrer. Beide Ansprechpartner gehen auf die Bedürfnisse von uns/unserem Kind ein und bieten besten Rat.
15.11.2024
Wir sind zufrieden:-)
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
Gratis Beratung (heute 7-22 Uhr)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen // Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7867