Mathematik > Terme und Gleichungen

Linearfaktorzerlegung quadratischer Gleichungen

Inhaltsverzeichnis:

Eine quadratische Gleichung kann in ihre Linearfaktoren zerlegt werden. Wie der Name Faktor schon sagt, wird die quadratische Gleichung dabei in ein Produkt umgeformt. Die allgemeine Form einer quadratischen Gleichung $ax^2+bx+c=0$ kann also in die Produktform $a\cdot (x-x_1)\cdot (x-x_2)=0 $ überführt werden.

Merke

Merke

Hier klicken zum Ausklappen

Bei der Zerlegung in Linearfaktoren wird der quadratische Term in ein Produkt umgeformt:

$ax^2+bx+c ~~~\rightarrow~~~a\cdot (x-x_1)\cdot (x-x_2)$

$x_1$ und $x_2$ sind die Lösungen der quadratischen Gleichung $ax^2+bx+c=0$ und

$(x-x_1)$ und $(x-x_2)$ sind die beiden Linearfaktoren.

$x_1$ und $x_2$ sind dabei die Nullstellen der quadratischen Funktion $f(x)=ax^2+bx+c$ bzw. die Lösungen der quadratischen Gleichung $ax^2+bx+c=0$. Diese können wir entweder mit der p-q-Formel, der Mitternachtsformel oder auch mit dem Satz von Vieta bestimmen.

Schauen wir uns ein Beispiel an:

Beispiele - Linearfaktorzerlegung

Beispiel

Beispiel

Hier klicken zum Ausklappen

Die folgenden quadratischen Gleichungen sollen in ihre Linearfaktoren zerlegt werden.

Beispiel 1:

 $x^2+3x-4=0$ 

Als erstes berechnen wir mit der p-q-Formel die Nullstellen:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$x^2 \textcolor{red}{+3} \cdot x \textcolor{orange}{-4} = 0$

$x_{1/2} = -\frac{\textcolor{red}{3}}{2}\pm \sqrt{(\frac{\textcolor{red}{3}}{2})^2-\textcolor{orange}{-4})}$

$x_{1/2} = -1,5\pm \sqrt{(\frac{9}{4} + 4)}$

$x_{1/2} = -1,5\pm \sqrt{6,25}= -1,5 \pm 2,5$

$x_1= 1$

$x_2 = -4$

Daraus ergeben sich die Linearfaktoren:

$x-1$    und    $x+4$

Die Quadratische Gleichung bzw. Funktion kann sowohl in der Normalform geschrieben werden als auch in der Produktform:

$x^2+3x-4 = 0 ~~\leftrightarrow~~(x-1)\cdot (x+4)=0$

$f(x)=x^2+3x-4~~\leftrightarrow~~f(x)=(x-1)\cdot (x+4)$

 

Beispiel 2:

$f(x)=2x^2-4x-16$

Zunächst setzen wir diese Funktion gleich Null:

$2x^2-4x-16=0$

Anschließend muss der Faktor $\textcolor{turquoise}{a}$ vor unserem $\textcolor{blue}{x^2}$ eliminiert werden, da sonst die p-q-Formel nicht angewendet werden kann. Dazu dividieren wir die Gleichung durch die Zahl 2:

$\textcolor{turquoise}{2}\textcolor{blue}{x^2}-4x-16=0 |:\textcolor{turquoise}{2}$

$x^2-2x-8=0$

Anschließend berechnen wir mit der p-q-Formel die Nullstellen:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$x^2 \textcolor{red}{-2} \cdot x \textcolor{orange}{-8} = 0$

$x_{1/2} = -\frac{\textcolor{red}{-2}}{2}\pm \sqrt{(\frac{\textcolor{red}{-2}}{2})^2-\textcolor{orange}{-8})}$

$x_{1/2} = 1\pm \sqrt{(1) + 8}$

$x_{1/2} = 1\pm \sqrt{9}= 1 \pm 3$

$x_1= 4$

$x_2 = -2$

Daraus ergeben sich die Linearfaktoren:

$x-4$    und    $x+2$

Die Quadratische Gleichung bzw. Funktion kann sowohl in der Normalform geschrieben werden als auch in der Produktform:

$2x^2-4x-16=0~~\leftrightarrow~~x^2-2x-8 = 0 ~~\leftrightarrow~~(x-4)\cdot (x+2)=0$

$f(x)=2x^2-4x-16~~\leftrightarrow~~f(x)=2\cdot (x-4)\cdot (x+2)$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Vorgehensweise - Linearfaktorzerlegung

Im Folgenden fassen wir nun nochmal kurz zusammen, wie du eine quadratische Gleichung in ihre Linearfaktoren zerlegen kannst. Die Vorgehensweise ist nicht schwer. Außerdem kannst du dein Ergebnis am Ende der Rechnung durch eine weitere einfache Rechnung überprüfen.

Methode

Methode

Hier klicken zum Ausklappen
  1. Die Nullstellen der quadratischen Gleichung bestimmen.
  2. Die beiden Linearfaktoren notieren: $(x-x_1)$ und $(x-x_2)$
  3. Die Nullstellen in die Form $ (x-x_1)\cdot (x-x_2)$ einsetzen.
  4. Mache eine Probe: Löse die Multiplikation auf und du erhältst die anfangs gegebene Normalform der quadratischen Gleichung.

Anwendung der Linearfaktorzerlegung

Mithilfe der Linearfaktorzerlegung können wir die Normalform einer quadratischen Funktion aufstellen. Auch komplexe Brüche lassen sich mithilfe der Linearfaktorzerlegung kürzen.

Aufstellen der Normalform

Wenn wir die Nullstellen einer Funktion gegeben haben, können wir mithilfe der Linearfaktoren ganz einfach eine Funktionsgleichung aufstellen. Diese können wir dann in die Normalform überführen, indem wir die Klammern ausmultiplizieren.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Die Nullstellen der Funktion sind $-5$ und $1$.

Wir können die Funktionsgleichung mithilfe von Linearfaktoren schreiben:

$ (x-x_1)\cdot (x-x_2) $

$ f(x)=(x-(-5))\cdot (x-1) $

$ f(x)=(x+5)\cdot (x-1) $

Wenn wir die Funktionsgleichung nun in die Normalform überführen wollen, müssen wir lediglich die Klammern ausmultiplizieren (auflösen):

$f(x)= x\cdot x +x\cdot (-1) +5\cdot x +5\cdot (-1)$

$f(x)= x^2-x+5x-5$

$f(x)= x^2+4x-5$

Kürzen von Brüchen

Komplexe Brüche lassen sich mithilfe der Linearfaktorzerlegung vereinfachen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Folgender Bruch ist gegeben:

$\large{\frac{x^2+4x-5}{x^2+x-2}}$

Bei diesem Bruch können wir nicht kürzen, da wir sowohl im Zähler als auch im Nenner jeweils eine Summe haben. ("In Summen kürzen nur die Dummen.") Daher zerlegen wir beide Funktionen in ihre Linearfaktoren.

Für den Zähler haben wir dies oben schon gemacht:

$x^2+4x-5~~~ \rightarrow~~~ (x+5)\cdot (x-1)$

Um die Nullstellen der unteren Funktion zu ermitteln, wenden wir bei dieser Aufgabe den Satz von Vieta an, da die Zahlenkombination sehr einfach ist. Die Aufgabe kann jedoch auch mit der p-q-Formel gelöst werden.

$1\cdot x^2+ \textcolor{red}{1}\cdot x\textcolor{blue}{-2}$

$x_1+x_2 = -\textcolor{red}{1}$

$x_1\cdot x_2 = \textcolor{blue}{-2}$

Durch Ausprobieren erhalten wir:

$x_1= 1$ und $x_2= -2$

Der Nenner lässt sich mithilfe von Linearfaktoren also auch so schreiben:

$(x-1)\cdot (x-(-2))~~\rightarrow~~(x-1)\cdot (x+2)$

Schreiben wir nun sowohl den Zähler des Bruches als auch den Nenner des Bruches in der Produktschreibweise, also mithilfe von Linearfaktoren, so können wir den Bruch nun kürzen, da nun ein Produkt vorliegt (und keine Summe mehr).

$\large{\frac{x^2+4x-6}{x^2+x-2} = \frac{(x+5)\cdot (x-1)}{(x-1)\cdot (x+2)}=\frac{(x+5)\cdot \cancel{(x-1)}}{\cancel{(x-1)}\cdot (x+2)}= \frac{x+5}{x+2}} $

Dank der Linearfaktorzerlegung haben wir den komplizierten Bruch vereinfacht.

Mit den Übungsaufgaben kannst du dein Wissen zu der Linearfaktorzerlegung vertiefen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie kann der Bruch vereinfacht werden?
$\large{\frac{x^2+x-2}{x^2-3x+2}}$

Teste dein Wissen!

Zerlege folgende Gleichung $x^2-3x+2 = 0$ in ihre Linearfaktoren. Welche Produktform trifft zu?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Zerlege folgende Gleichung $x^2+4x-5 = 0$ in ihre Linearfaktoren. Welche Produktform trifft zu?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie kann die Funktion $f(x) = x^2+5x+4$ in die Produktform umgeformt werden? Kreuze das korrekte Ergebnis an.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Berrin A., vom

Meine Tochter ist zufrieden und kommt gerne

anonymisiert, vom

Alle super freundlich.

Kerstin B., vom

Die Kommunikation mit dem Studienkreis in Brühl zwischen Leitung, Eltern und Kind ist schnell, direkt und ausführlich erklärt. Mein Sohn hat nur positive Erfahrungen bis jetzt dort gemacht.

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2021
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 Probestunden GRATIS & unverbindliche Beratung

In den Probestunden kann Ihr Kind uns testen und die Nachhilfe im Studienkreis kennenlernen.

In einem unverbindlichen Beratungsgespräch mit Ihnen, finden wir gemeinsam die optimale Förderung für Ihr Kind.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2 x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7867