Lineare Gleichungssysteme lösen - Einsetzungsverfahren

Mathematik > Terme und Gleichungen
Lineare Gleichungssysteme lösen -  Einsetzungsverfahren | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Lineare Gleichungssysteme lassen sich auf viele Arten lösen. Für den Fall, dass wir ein Gleichungssystem betrachten, das aus zwei Gleichungen besteht, bietet sich das sogenannte Einsetzverfahren an. Bei Gleichungssystemen mit mehr Gleichungen und Variablen ist diese Methode meist zu aufwendig.

Merke

Beim Einsetzverfahren löst man eine der beiden Gleichungen nach einer Variablen auf und setzt diese in die andere Gleichung ein.

Beispiel

Betrachten wir dieses lineare Gleichungssystem:

$|6\cdot x + 12 \cdot y = 30|$

$|3 \cdot x + 3\cdot y = 9|$

1. Schritt: Eine Gleichung nach einer Variablen auflösen

Für den ersten Schritt musst du zunächst eine Entscheidung treffen: Welche Gleichung willst du nach welcher Variablen umformen? Theoretisch ist es egal wofür du dich entscheidest, da alles zum selben Ergebnis führt. Du wirst später aber auch auf Aufgaben stoßen, bei der ein Weg durchaus schwerer sein kann als der andere. Manchmal muss man also einfach ausprobieren, welcher Weg sich als der bessere erweist.

In unserem Beispiel beginnen wir mit der oberen Gleichung und stellen nach der Variablen $x$ um. Diese Umformung folgt den Regeln zum Lösen von Gleichungen. Dein wichtigstes Werkzeug ist also die Äquivalenzumformung.

$6\cdot x + 12 \cdot y = 30~~~~| -12\cdot y$

$6 \cdot x = 30 - 12\cdot y~~~~| : 6$

$x = 5 - 2 \cdot y$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

2. Schritt: Ausdruck der Variable in die andere Gleichung einsetzen

Den Ausdruck, den wir für $x$ erhalten haben, können wir nun in die zweite Gleichung einsetzen.

$3 \cdot x + 3\cdot y = 9~~~~| $x einsetzen

$3 \cdot (5 - 2\cdot y) + 3\cdot y = 9$

Durch das Einsetzen von $x$ erhalten wir eine Gleichung, die nur eine Variable, in diesem Fall $y$, enthält. Durch Umformen erhalten wir einen exakten Wert für $y$:

$3 \cdot (5 - 2\cdot y) + 3\cdot y = 9~~~~| $Klammer ausmultiplizieren

$15 - 6\cdot y + 3\cdot y = 9~~~~|$zusammenfassen

$15 - 3\cdot y = 9~~~~| -15$

$- 3\cdot y = - 6~~~~| : (-3)$

$y = 2$

3. Schritt: Ausgerechnete Variable einsetzen

Wir haben einen Wert für $y$. Nun müssen wir diesen Wert noch in eine der beiden Ausgangsgleichungen einsetzen, die ja sowohl die Variable $x$ als auch die Variable $y$ enthalten. Welche Gleichung du nimmst ist egal.

Wir setzen den errechneten Wert für $y$ in die erste Gleichung ein.

$6\cdot x + 12 \cdot y = 30~~~~| $y einsetzen

$6\cdot x + 12 \cdot 2 = 30~~~~| $umformen

$6 \cdot x + 24 = 30~~~~| - 24$

$6 \cdot x =6~~~~|:6$

$x = 1$

Wir erhalten als Lösung also $x = 1$ und $y = 2$.

4. Probe der Ergebnisse

Um sicher zu gehen, dass die Ergebnisse korrekt sind, setzen wir zum Schluss noch die errechneten Werte für $x$ und $y$ in die beiden Gleichungen ein.

$6\cdot 1 + 12 \cdot 2 = 30~~~~~~~~~~3\cdot 1 + 3\cdot 2 = 9$

$30 = 30~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~9 = 9$

Der mathematische Ausdruck ist korrekt, somit ist unsere Lösung richtig.

Merke

Lösen von linearen Gleichungen mit Hilfe des Einsetzverfahrens

1. Eine Gleichung nach einer Variablen auflösen.

2. Ausdruck der Variable in die andere Gleichung einsetzen.

3. Ausgerechnete Variable einsetzen.

4. Probe der Ergebnisse mit Hilfe der Ausgangsgleichungen.

Jetzt hast du einen detaillierten Überblick über die Anwendung des Einsetzungsverfahren zur Lösung von linearen Gleichungssystemen bekommen. Ob du alles verstanden hast, kannst du nun anhand unserer Übungen testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welche Aussage trifft zu?

Teste dein Wissen!

Welche Werte für $x$ und $y$ erhält man, wenn man dieses lineare Gleichungssystem mit Hilfe des Einsetzverfahrens löst?

$|x + y= 1|$
$|2\cdot x + 6\cdot y = 2|$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Betrachte folgendes Gleichungssystem. Wie würde der Ausdruck für $x$ aussehen, wenn wir die erste Gleichung nach dieser Variable umstellen?

$|x + y= 1|$
$|2\cdot x + 6\cdot y = 2|$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In welchem Fall eignet sich das Einsetzverfahren zum Lösen des linearen Gleichungssystems?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7864