3. binomische Formel: Herleitung und Beispiele
In diesem Lerntext beschäftigen wir uns mit der dritten binomischen Formel. Die dritte binomische Formel hilft dir beim Zusammenfassen zweier Klammern, die miteinander multipliziert werden und die gleichen Variablen besitzen. Die jeweils zweite Variable hat jedoch ein anderes Vorzeichen.
Merke
Merke
3. binomische Formel
$(\textcolor{blue}{a} + \textcolor{red}{b}) \cdot (\textcolor{blue}{a} - \textcolor{red}{b}) = (\textcolor{blue}{a}^2 - \textcolor{red}{b}^2)$
Rechnerische Herleitung der dritten binomischen Formel
Die Herleitung der dritten binomischen Formel folgt, ähnlich wie bei der ersten und zweiten binomischen Formel, ganz normalen Umformungsregeln. Zunächst multiplizieren wir die Klammern miteinander, indem wir jede Variable innerhalb der einen Klammer mit den Variablen der anderen Klammer multiplizieren.
$(a + b) \cdot (a - b) = a \cdot a + a \cdot ( - b) + b\cdot a + b \cdot (- b)$
Rechnen wir die Vorzeichen zusammen erhalten wir folgenden Term:
$a \cdot a + a \cdot ( - b) + b\cdot a + b \cdot (- b) = a^2 - a\cdot b + a \cdot b - b^2$
Die beiden mittleren Ausdrücke ($a\cdot b$ und $-a \cdot b$) kürzen sich gegenseitig raus. Was übrig bleibt ist die dritte binomische Formel:
$a^2 - a\cdot b + a \cdot b - b^2 = a^2 - b^2$
Merke
Merke
3. binomische Formel
$(\textcolor{blue}{a} + \textcolor{red}{b}) \cdot (\textcolor{blue}{a} - \textcolor{red}{b}) = (\textcolor{blue}{a}^2 - \textcolor{red}{b}^2)$
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Beispiele für die dritte binomische Formel
Beispiel
Beispiel
$(\textcolor{blue}{a} + \textcolor{red}{b}) \cdot (\textcolor{blue}{a} - \textcolor{red}{b}) = (\textcolor{blue}{a}^2 - \textcolor{red}{b}^2)$
$(\textcolor{blue}{3} + \textcolor{red}{x}) \cdot (\textcolor{blue}{3} - \textcolor{red}{x}) = (\textcolor{blue}{3}^2 - \textcolor{red}{x}^2) = (9 - x^2)$
$(\textcolor{blue}{a} + \textcolor{red}{5}) \cdot (\textcolor{blue}{a} - \textcolor{red}{5}) = (\textcolor{blue}{a}^2 - \textcolor{red}{5}^2) = (a^2 - 25)$
$(\textcolor{blue}{81} - \textcolor{red}{y}^4) = (\textcolor{blue}{9} + \textcolor{red}{y^2}) \cdot (\textcolor{blue}{9} - \textcolor{red}{y^2})$
Geometrische Herleitung der dritten binomischen Formeln
Ähnlich wie die erste und die zweite binomische Formel lässt sich auch die dritte binomische Formel grafisch über die Flächeninhalte von Rechtecken herleiten bzw. beweisen.

In der linken Abbildung entspricht das blaue Vieleck dem Flächeninhalt $A_{Vieleck} = a^2 - b^2$. Dasselbe Vieleck lässt sich an der Diagonalen auseinander schneiden und ergibt neu zusammengesetzt ein Rechteck mit dem Flächeninhalt $A_{Rechteck}= (a+b) \cdot (a-b)$, das du in der rechten Abbildung siehst.
Da der Flächeninhalt durch die Transformation nicht geändert wurde, kann man die unterschiedlichen Ausdrücke gleichsetzen:
$A_{Vieleck} = A_{Rechteck}$
$a^2 - b^2 = (a + b) \cdot (a - b)$
Wir erhalten auch hier die dritte binomische Formel.
Anwendung der dritten binomischen Formel
Die dritte binomische Formel kann genutzt werden, um Produkte der folgenden Art zu vereinfachen und gegebenenfalls ohne Taschenrechner auszurechnen:
$105 \cdot 95 = (100 + 5) \cdot (100 - 5) = 100^2 - 5^2 = 10000 - 25 = 9975$
Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Erfolg dabei!
Teste dein Wissen!
Berechne das Ergebnis mit Hilfe der dritten binomischen Formel. Benutze keinen Taschenrechner!
$6^2 - 5^2$
Wie lässt sich der Term mit Hilfe der dritten binomischen Formel vereinfachen?
$(x + 5) \cdot (x - 5)$
Wie lautet die dritte binomische Formel?
Löse dieses Produkt mit Hilfe der dritten binomischen Formel. Kreuze das richtige Ergebnis an.
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema


















Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen