Online Lernen | Mathematik Aufgaben | Terme und Gleichungen Binomische Formeln Binomische Formeln hoch 3, 4 und 5

Binomische Formeln hoch 3, 4 und 5

Die "klassischen" drei binomischen Formeln gehen jeweils von einem quadrierten Term aus, das heißt von einem Term, der hoch 2 genommen wird. Es stellt sich natürlich die Frage, ob es auch binomische Formeln für den Fall gibt, dass der Exponent des Binoms größer als zwei ist. Tatsächlich gibt es auch für diese seltenen Fälle binomische Formeln. Der Grund, weshalb diese eher unbekannt sind, liegt darin, dass die Ausdrücke deutlich komplizierter und nicht so einfach zu lernen sind, wie die der binomischen Formeln hoch 2.

Methode

Methode

Hier klicken zum Ausklappen

Im Folgenden werden wir drei mögliche Fälle von höheren Exponenten mit Hilfe von binomischen Formeln berechnen. Als Beispiel orientieren wir uns jeweils an der ersten binomischen Formel, also an einer Summe in der Klammer. 

1. binomische Formel: $(a \textcolor{red}{+} b)^2 = a^2 + 2\cdot a \cdot b + b^2$

Binomische Formeln mit dem Exponent 3

Um binomische Terme mit dem Exponenten $3$ zu vereinfachen, lösen wir zunächst die Potenz auf. Dabei zerlegen wir den hoch 3 Term in eine Multiplikation aus einer einzelnen Klammer und einem hoch 2 Term, den wir wiederum mit den uns bekannten binomischen Formeln auflösen können.

$(a + b)^3 = (a+b)^2 \cdot (a+b) = (a^2+2\cdot a \cdot b + b^2) \cdot (a + b)$

Nun müssen wir die zwei übrigen Klammern ausmultiplizieren, das heißt wir nehmen jede Zahl der einen Klammer mit der der anderen mal und verknüpfen sie durch ein Pluszeichen. Dabei ergibt sich zunächst ein sehr komplizierter Ausdruck.

$(a+b)^3 = (a \cdot a^2) + (a \cdot 2\cdot a\cdot b) + (a \cdot b^2) + (b \cdot a^2) + (b\cdot 2\cdot a\cdot b) + (b \cdot b^2)$

Rechnen wir soweit es geht alle Multiplikationen zusammen, erhalten wir folgenden Ausdruck:

$(a + b)^3 = a^3 + \textcolor{red}{(2 \cdot a^2 \cdot b)}+ \textcolor{blue}{(a \cdot b^2)} + \textcolor{red}{(b \cdot a^2)} + \textcolor{blue}{(2\cdot a\cdot b^2)} + b^3$

Die farbig markierten Terme lassen sich zusammenfassen:

$(a + b)^3 = a^3 + \textcolor{red}{3 \cdot a^2 \cdot b} + \textcolor{blue}{3 \cdot a \cdot b^2} + b^3$

Diese Formel lässt sich entsprechend auch für den Fall einer Differenz formulieren.

Merke

Merke

Hier klicken zum Ausklappen

Die binomischen Fomeln mit dem Exponenten $3$ 

$(a+b)^3 = a^3 + 3\cdot a^2\cdot b + 3\cdot a \cdot b^2 + b^3$
$(a-b)^3 = a^3 - 3\cdot a^2\cdot b + 3\cdot a \cdot b^2 - b^3$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(x + 2)^3 = x^3 + 3 \cdot x^2 \cdot 2 + 3\cdot x \cdot 4 +2^3$

$(x + 2)^3 =x^3 + 6\cdot x^2 + 12 \cdot x + 8$

Binomische Formeln mit dem Exponent 4

Ist der Exponent des Terms eine $4$, wird der Ausdruck noch komplizierter. Das Vorgehen ist dasselbe, wie beim Exponent $3$. Zunächst zerlegen wir die Potenz in eine Multiplikation aus einem hoch 3 Term und einer einzelnen Klammer. Den hoch 3 Term können wir mit der eben aufgestellten binomischen Formel ausrechnen.

$(a+b)^4 = (a+b)^3 \cdot (a+b) = (a^3 + 3\cdot a^2\cdot b + 3\cdot a \cdot b^2 + b^3) \cdot (a+b)$

Jetzt müssen die Klammern nur noch ausmultipliziert werden.

$(a+b)^4 = a^4 + 4\cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 + 4\cdot a \cdot b^3 + b^4$

Der Term lässt sich natürlich auch wieder für den Fall formulieren, dass innerhalb der Klammer eine Differenz steht.

Merke

Merke

Hier klicken zum Ausklappen

Die binomischen Formeln mit dem Exponenten $4$

$(a+b)^4 = a^4 + 4\cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 + 4\cdot a \cdot b^3 + b^4$

$(a-b)^4 = a^4 - 4\cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 - 4\cdot a \cdot b^3 + b^4$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(3+x)^4 = 81 + 108 \cdot x + 54 \cdot x^2 + 12 \cdot x^3 + x^4$

$(3-x)^4 = 81 -108 \cdot x + 54 \cdot x^2 - 12 \cdot x^3 + x^4$

Binomische Formeln mit dem Exponent 5

Der Fall, dass der Exponent eines Binoms $5$ ist, ist sehr selten. Aber auch für diesen Fall wollen wir einmal die binomische Formel formulieren. Das Vorgehen ist dasselbe wie bei den Exponenten $3$ und $4$. Als Ergebnis erhalten wir folgende Ausdrücke:

Merke

Merke

Hier klicken zum Ausklappen

Die binomischen Formeln mit dem Exponenten $5$

$(a+b)^5 = a^5 + 5\cdot a^4\cdot b + 10\cdot a^3 \cdot b^2 + 10 \cdot a^2\cdot b^3 + 5\cdot a \cdot b^4+ b^5$

$(a-b)^5 = a^5 - 5\cdot a^4\cdot b + 10\cdot a^3 \cdot b^2 - 10 \cdot a^2\cdot b^3 + 5\cdot a \cdot b^4- b^5$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(5+x)^5 = 3125 + 3125 \cdot x + 1250 \cdot x^2 + 250 \cdot x^3 + 25 \cdot x^4 + x^5$

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7854