Lineare Gleichungssysteme zeichnerisch lösen

Mathematik > Terme und Gleichungen
Lineare Gleichungssysteme zeichnerisch lösen | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Ein lineares Gleichungssystem, auch LGS genannt, besteht aus mindestens zwei linearen Gleichungen. Um lineare Gleichungssysteme zu lösen, können wir neben den rechnerischen Verfahren (Addition, Einsetzen und Gleichsetzen) auch eine zeichnerische Methode benutzen.

Merke

Lineare Gleichungssysteme bestehen aus mindestens zwei linearen Gleichungen.

Gleichungssystem bedeutet, dass die Gleichungen zusammen gehören - sie müssen gleichzeitig erfüllt sein. Das heißt, dass der Wert einer Variablen für beide Gleichungen gelten muss.

Um lineare Gleichungssysteme zeichnerisch zu lösen, gehen wir folgendermaßen vor:

Methode

Lineare Gleichungssysteme zeichnerisch lösen

1. Gleichungen des Gleichungssystems in die Normalform ($y = m \cdot x + n$) umformen.

2. y- Achsenabschnitte der Geraden ablesen (n-Wert).

3. Je Gerade einen weiteren Punkt durch Einsetzen eines beliebigen x-Wertes berechnen.

4. Geraden mithilfe der gegebenen Punkte zeichnen.

5. Wenn vorhanden, Schnittpunkt ablesen.

Wie beim rechnerischen Lösen von linearen Gleichungssystemen, unterscheiden wir auch hier drei unterschiedliche Fälle:

  • Das Gleichungssystem hat genau eine Lösung.
  • Das Gleichungssystem hat keine Lösung.
  • Das Gleichungssystem hat unendlich viele Lösungen.
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Gleichungssysteme mit einer Lösung

Betrachten wir folgendes Gleichungssystem:

$I: \textcolor{blue}{y= 2\cdot x -3}$

$II:\textcolor{red}{y= - x + 6}$

Die Gleichungen des Gleichungssystems befinden sich schon in der Normalform und wir können direkt jeweils zwei Punkte bestimmen, um die Geraden zu zeichnen.

Lineare Gerade I: Der y-Achsenabschnitt der ersten Gerade liegt bei $\textcolor{blue}{P_1(0|-3)}$. Einen zweiten Punkt erhalten wir, indem wir einen beliebigen x-Wert einsetzen. Wir nehmen beispielsweise den Wert $x = 2$:

$y = 2 \cdot 2 - 3 = 1$

Unser zweiter Punkt lautet demnach $\textcolor{blue}{Q_1(2|1)}$

Lineare Gerade II: Der y-Achsenabschnitt der zweiten Gerade liegt bei $\textcolor{red}{P_2(0|6)}$. Für den zweiten Punkt setzen wir den Wert $x = 5$ ein und erhalten $\textcolor{red}{Q_2(5|1)}$.

Wir bekommen für die beiden Gleichungen also folgende Punkte, die wir einzeichnen und zu Geraden verbinden können.

$\textcolor{blue}{P_1(0|-3)}~;~\textcolor{blue}{Q_1(2|1)}~;~\textcolor{red}{P_2(0|6)}~;~\textcolor{red}{Q_2(5|1)}$

Lineares Gleichungssystem mit einer Lösung
Lineares Gleichungssystem mit einer Lösung

Merke

Der Schnittpunkt der Geraden entspricht der Lösung des Gleichungssystems.

Das Gleichungssystem besitzt eine Lösung, weil sich die Geraden in einem Punkt schneiden. Diesen Punkt können wir ablesen und erhalten die Lösung des Gleichungssystems: $\textcolor{green}{S(3|3)} \rightarrow x =3; y=3$

Am Ende sollten wir unser Ergebnis noch prüfen, indem wir den x- und y-Wert der Lösung in die Gleichungen einsetzen.

$I: 3 = 2\cdot  3 -3 \leftrightarrow 3 = 3~~~~\textcolor{green}{WAHR}$

$II: 3 = - 3 + 6 \leftrightarrow 3 = 3~~~~\textcolor{green}{WAHR}$

Beide Gleichungen ergeben einen wahren Ausdruck. Unser Ergebnis ist also richtig!

Gleichungssysteme ohne Lösung

Merke

Ein Gleichungssystem hat keine Lösung, wenn die Geraden keine Schnittpunkte besitzen.

Schauen wir uns auch hierzu ein Beispiel an:

$I: \textcolor{blue}{y= 0,5\cdot x + 2}$

$II:\textcolor{red}{y= 0,5 \cdot x - 1}$

Wir gehen zunächst genauso vor wie im obigen Beispiel und bestimmen jeweils den y-Achsenabschnitt und einen weiteren Punkt, um die Geraden zeichnen zu können. Wir erhalten folgende Punkte:

$I:\textcolor{blue}{P_1(0|2)}~;~\textcolor{blue}{Q_1(2|3)}$

$II: \textcolor{red}{P_2(0|-1)}~;~\textcolor{red}{Q_2(1|-0,5)}$

Zeichnen wir die Geraden in ein Koordinatensystem fällt auf, dass die Geraden keinen Schnittpunkt besitzen. Das Gleichungssystem hat somit auch keine Lösung, die wir ablesen bzw. ausrechnen könnten.

Lineares Gleichungssystem ohne Lösung
Lineares Gleichungssystem ohne Lösung

Geraden schneiden sich immer dann nicht, wenn sie dieselbe Steigung, aber einen unterschiedlichen y-Achsenabschnitt besitzen. Die Geraden sind dann Parallelen.

Gleichungssysteme mit unendlich vielen Lösungen

Gleichungssysteme können auch unendlich viele Lösungen besitzen. Das bedeutet, dass die Gleichungen im Gleichungssystem identisch sind. Dies ist oft nicht direkt erkennbar, da die Gleichungen nicht in der Normalform stehen.

Beispiel

$I: \textcolor{blue}{3 \cdot x= -3 + y}$

$II:\textcolor{red}{y= 3\cdot x + 3}$

Stellen wir die erste Gleichung nach $y$ um, erhalten wir zwei identische Gleichungen:

$I: \textcolor{blue}{y= 3\cdot x + 3}$

$II:\textcolor{red}{y= 3\cdot x + 3}$

Auch in diesem Fall könnten wir die Gleichungen zeichnen, jedoch liegen sie genau aufeinander. Gleichungssysteme besitzen also unendlich viele Lösungen, wenn die Geraden identisch sind.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welche Eigenschaft trifft auf dieses Gleichungssystem zu?

$I: - 9 + y = 14 \cdot x$
$II: 9= -y -14 \cdot x$

Teste dein Wissen!

Welche Eigenschaft trifft auf diese beiden Geraden zu?

$I: y = 6 \cdot x + 5$
$II: y = 6 \cdot x - 3$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Lineare Gleichungssysteme besitzen genau eine Lösung, wenn...

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lautet der y-Achsenabschnitt dieser Gerade?

$y = 7 \cdot x - 5$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7865