Lineare Gleichungssysteme einfach erklärt
Was sind lineare Gleichungssysteme? Worin unterscheiden sie sich von einer linearen Gleichung? Auf dieser Lernseite klären wir diese und andere Fragen. Außerdem werden wir mit dir lineare Gleichungssysteme lösen und uns immer wieder Textaufgaben zu diesem Thema anschauen.
Lineare Gleichungen sind dir wahrscheinlich schon unter dem Begriff der Gleichung, also ohne das Merkmal linear, bekannt. Die Bedeutung ist jedoch dieselbe. Lineare Gleichungen bestehen meist aus ganzen Zahlen und beinhalten eine Variable, das heißt eine Zahl, deren Wert unbekannt ist. Ziel ist es, eben diesen Wert herauszufinden. Mit Hilfe von Ausklammern und Äquivalenzumformungen lassen sich solche Gleichungen lösen. Hier einige Beispiele für lineare Gleichungen.
Beispiel
$x + 5 = 9$
$3 \cdot x = 21$
$\frac{x}{4} = 5$
Von der Gleichung zum Gleichungssystem
Wie kommen wir nun von einer linearen Gleichung zu einem Gleichungssystem? Ein lineares Gleichungssystem besitzt bestimmte Eigenschaften, die normale Gleichungen nicht haben. So bestehen lineare Gleichungssysteme aus mindestens zwei linearen Gleichungen und dementsprechend auch aus mindestens zwei unbekannten Variablen.
Merke
Lineare Gleichungssysteme bestehen aus mindestens zwei linearen Gleichungen.
Gleichungssystem bedeutet, dass die Gleichungen zusammen gehören - sie müssen gleichzeitig erfüllt sein. Das heißt, dass der Wert einer Variablen für beide Gleichungen gelten muss. Schauen wir uns dazu ein lineares Gleichungssystem als Beispiel an.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Lineares Gleichungssystem - Beispiel Textaufgabe
Beispiel
Du möchtest einkaufen gehen, weißt allerdings nicht mehr wie teuer eine Banane und wie teuer eine Tüte Milch sind. Du kannst dich nur noch an deine letzten Einkäufe erinnern und weißt, dass 5 Bananen und 6 Tüten Milch 11€ gekostet haben und, dass 2 Bananen und 2 Tüten Milch zusammen 6€ gekostet haben.
Aus diesen Informationen kannst du errechnen, wie viel eine Tüte Milch und eine Banane einzeln kosten. Mathematisch gesehen haben wir zwei Unbekannte (den Einzelpreis der Banane und der Milch) und, auf Grund der zwei Informationen über deine letzten Einkäufe, auch zwei Gleichungen mit zwei Unbekannten:
5 Bananen + 6 Milchtüten = 11€
$~~~5 \cdot x~~~~~~+~~~6 \cdot y~~~~~~~= 11$
2 Bananen + 2 Milchtüten = 6€
$~~~2 \cdot x~~~~~~+~~~2 \cdot y~~~~~~~= 6$
Die beiden Gleichungen, die wir aus der Aufgabe formuliert haben, hängen zusammen. Das $x$ der ersten Gleichung muss in der zweiten Gleichung denselben Wert haben. Dasselbe gilt für die zweite Variable, das $Y$. In einem Gleichungssystem schreibt man die beiden Terme folgendermaßen auf:
$|5 \cdot x + 6 \cdot y = 11|$
$|2 \cdot x + 2 \cdot y = 6|$
Die beiden Gleichungen werden untereinandergeschrieben und von vertikalen Strichen eingerahmt. Um dieses Gleichungssystem zu lösen, gibt es unterschiedliche Methoden, die du dir auf unseren anderen Lernseiten anschauen kannst:
Gut zu wissen
Du kannst lineare Gleichungssysteme mit Hilfe von unterschiedlichen Methoden lösen. Du gelangst zu den Lernseiten zu diesen Methoden, indem du auf die folgenden Begriffe klickst:
Sonderfälle von Gleichungssystemen
Man unterscheidet zwei besondere Fälle von Gleichungssystemen, überbestimmte und unterbestimmte Gleichungssysteme.
Überbestimmtes Gleichungssystem
Ein Gleichungssystem kann überbestimmt sein. In diesem Fall erhältst du aus der Aufgabe mehr Gleichungen als Variablen. Das ist an sich nicht schlimm und könnte dein Rechnen sogar vereinfachen. Oft widersprechen sich die Gleichungen aber. In diesem Fall gibt es keine Lösung für das Gleichungssystem.
Beispiel
$|2 \cdot a + b = 10|$
$|2\cdot a =0|$
$|a - b = 0|$
Die zweite Gleichung legt fest, dass $a$ den Wert $0$ haben muss. Ist dies der Fall, können die erste und dritte Gleichung nicht gleichzeitig erfüllt sein.
Unterbestimmtes Gleichungssystem
Es kann auch der gegenteilige Fall eintreten: du erhältst aus der Aufgabe mehr Variablen als Gleichungen. Das Gleichungssystem gilt als unterbestimmt. Höchstwahrscheinlich bekommst du dann nur einen Wertebereich anstatt eines exakten Werts geliefert.
Beispiel
$a + b + c = 9$
$a + b= 6$
Teste dein neu erlerntes Wissen über lineare Gleichungssysteme nun mit unseren Aufgaben. Viel Erfolg dabei!
Hol dir Hilfe beim Studienkreis!
Selbst-Lernportal Online
Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!
- Online-Chat 14-20 Uhr
- 700 Lerntexte & Videos
- Über 250.000 Übungsaufgaben
Einzelnachhilfe Online
Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!
- Online-Nachhilfe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Nachhilfe in deiner Nähe
Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Nachhilfe in deiner Nähe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer