Mathematik > Terme und Gleichungen

Lineare Gleichungssysteme einfach erklärt

Inhaltsverzeichnis:

Was sind lineare Gleichungssysteme? Worin unterscheiden sie sich von einer linearen Gleichung? Auf dieser Lernseite klären wir diese und andere Fragen. Außerdem werden wir mit dir lineare Gleichungssysteme lösen und uns immer wieder Textaufgaben zu diesem Thema anschauen.

Lineare Gleichungen sind dir wahrscheinlich schon unter dem Begriff der Gleichung, also ohne das Merkmal linear, bekannt. Die Bedeutung ist jedoch dieselbe. Lineare Gleichungen bestehen meist aus ganzen Zahlen und beinhalten eine Variable, das heißt eine Zahl, deren Wert unbekannt ist. Ziel ist es, eben diesen Wert herauszufinden. Mit Hilfe von Ausklammern und Äquivalenzumformungen lassen sich solche Gleichungen lösen. Hier einige Beispiele für lineare Gleichungen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x + 5 = 9$

$3 \cdot x = 21$

$\frac{x}{4} = 5$

Von der Gleichung zum Gleichungssystem

Wie kommen wir nun von einer linearen Gleichung zu einem Gleichungssystem? Ein lineares Gleichungssystem besitzt bestimmte Eigenschaften, die normale Gleichungen nicht haben. So bestehen lineare Gleichungssysteme aus mindestens zwei linearen Gleichungen und dementsprechend auch aus mindestens zwei unbekannten Variablen.

Merke

Merke

Hier klicken zum Ausklappen

Lineare Gleichungssysteme bestehen aus mindestens zwei linearen Gleichungen.

Gleichungssystem bedeutet, dass die Gleichungen zusammen gehören - sie müssen gleichzeitig erfüllt sein. Das heißt, dass der Wert einer Variablen für beide Gleichungen gelten muss. Schauen wir uns dazu ein lineares Gleichungssystem als Beispiel an.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Lineares Gleichungssystem - Beispiel Textaufgabe

Beispiel

Beispiel

Hier klicken zum Ausklappen

Du möchtest einkaufen gehen, weißt allerdings nicht mehr wie teuer eine Banane und wie teuer eine Tüte Milch sind. Du kannst dich nur noch an deine letzten Einkäufe erinnern und weißt, dass 5 Bananen und 6 Tüten Milch 11€ gekostet haben und, dass 2 Bananen und 2 Tüten Milch zusammen 6€ gekostet haben. 

Aus diesen Informationen kannst du errechnen, wie viel eine Tüte Milch und eine Banane einzeln kosten. Mathematisch gesehen haben wir zwei Unbekannte (den Einzelpreis der Banane und der Milch) und, auf Grund der zwei Informationen über deine letzten Einkäufe, auch zwei Gleichungen mit zwei Unbekannten:

5 Bananen + 6 Milchtüten = 11€

$~~~5 \cdot x~~~~~~+~~~6 \cdot y~~~~~~~= 11$

2 Bananen + 2 Milchtüten = 6€

$~~~2 \cdot x~~~~~~+~~~2 \cdot y~~~~~~~= 6$

Die beiden Gleichungen, die wir aus der Aufgabe formuliert haben, hängen zusammen. Das $x$ der ersten Gleichung muss in der zweiten Gleichung denselben Wert haben. Dasselbe gilt für die zweite Variable, das $Y$. In einem Gleichungssystem schreibt man die beiden Terme folgendermaßen auf:

$|5 \cdot x + 6 \cdot y = 11|$

$|2 \cdot x + 2 \cdot y = 6|$

Die beiden Gleichungen werden untereinandergeschrieben und von vertikalen Strichen eingerahmt. Um dieses Gleichungssystem zu lösen, gibt es unterschiedliche Methoden, die du dir auf unseren anderen Lernseiten anschauen kannst:

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Du kannst lineare Gleichungssysteme mit Hilfe von unterschiedlichen Methoden lösen. Du gelangst zu den Lernseiten zu diesen Methoden, indem du auf die folgenden Begriffe klickst:

  1. Lineare Gleichungssysteme durch Gleichsetzten lösen
  2. Lineare Gleichungssysteme zeichnerisch lösen
  3. Lineare Gleichungssysteme lösen - Einsetzungsverfahren
  4. Lineare Gleichungssysteme lösen - Additionsverfahren

Sonderfälle von Gleichungssystemen

Man unterscheidet zwei besondere Fälle von Gleichungssystemen, überbestimmte und unterbestimmte Gleichungssysteme.

Überbestimmtes Gleichungssystem

Ein Gleichungssystem kann überbestimmt sein. In diesem Fall erhältst du aus der Aufgabe mehr Gleichungen als Variablen. Das ist an sich nicht schlimm und könnte dein Rechnen sogar vereinfachen. Oft widersprechen sich die Gleichungen aber. In diesem Fall gibt es keine Lösung für das Gleichungssystem.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$|2 \cdot a + b = 10|$

$|2\cdot a =0|$

$|a - b = 0|$

Die zweite Gleichung legt fest, dass $a$ den Wert $0$ haben muss. Ist dies der Fall, können die erste und dritte Gleichung nicht gleichzeitig erfüllt sein.

Unterbestimmtes Gleichungssystem

Es kann auch der gegenteilige Fall eintreten: du erhältst aus der Aufgabe mehr Variablen als Gleichungen. Das Gleichungssystem gilt als unterbestimmt. Höchstwahrscheinlich bekommst du dann nur einen Wertebereich anstatt eines exakten Werts geliefert.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$a + b + c = 9$

$a + b= 6$

Teste dein neu erlerntes Wissen über lineare Gleichungssysteme nun mit unseren Aufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie lässt sich dieses lineare Gleichungssystem beschreiben?

$|13\cdot x + 5\cdot y - 3\cdot z =25|$
$|5\cdot x + 7\cdot y =12|$

Teste dein Wissen!

Welche Spezialfälle von Gleichungssystemen können unterschieden werden?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wobei handelt es sich um eine lineare Gleichung?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Für lineare Gleichungssysteme gilt:

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8595