Mathematik > Terme und Gleichungen

Mitternachtsformel: Herleitung und Übungen

Inhaltsverzeichnis:

Es gibt verschiedene Möglichkeiten, eine quadratische Gleichung zu lösen. Neben der quadratischen Ergänzung und der p-q-Formel gibt es noch die sogenannte Mitternachtsformel, auch abc-Formel genannt, in Mathe.

Merke

Merke

Hier klicken zum Ausklappen

Für eine Gleichung der Form $\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0$ gilt:

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Die Mitternachtsformel verdankt ihren Namen der Vorstellung, dass jeder Schüler, selbst wenn er um Mitternacht geweckt wird, diese Formel aufsagen kann. Der korrekte Ausdruck ist abc-Formel und leitet sich von den drei einzusetzenden Werten $a$, $b$ und $c$ ab.

Folgend zeigen wir dir die Herleitung der Mitternachtsformel bzw. abc-Formel, sowie die Anwendung in Mathe an Beispielen.

Mitternachtsformel: Herleitung

Es existieren verschiedene Herleitungen der Mitternachtsformel. Die wohl anschaulichste ist die Herleitung mit Hilfe der p-q-Formel. Zunächst gehen wir von der allgemeinen Form einer quadratischen Gleichung aus.

$\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0~~~~~|:\textcolor{blue}{a}$

$x^2 + \frac{\textcolor{green}{b}}{\textcolor{blue}{a}} \cdot x + \frac{\textcolor{brown}{c}}{\textcolor{blue}{a}} = 0$

Durch das Dividieren durch den Faktor vor dem $x^2$ erhalten wir die sogenannte Normalform einer quadratischen Gleichung, die sich mit Hilfe der p-q-Formel lösen lässt.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

p-q Formel:

Für eine Gleichung der Form $x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$ gilt:

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

In diesem Fall gilt:

  • $\frac{\textcolor{green}{b}}{\textcolor{blue}{a}} = \textcolor{red}{p}$
  • $\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}} = \textcolor{orange}{q}$

Beginnen wir mit der Herleitung:

$x^2 + \frac{\textcolor{green}{b}}{\textcolor{blue}{a}} \cdot x + \frac{\textcolor{brown}{c}}{\textcolor{blue}{a}} = 0~~~~|p-q-Formel$

$x_{1,2} = - \frac{\frac{\textcolor{green}{b}}{\textcolor{blue}{a}}}{2} \pm \sqrt{(\frac{\frac{\textcolor{green}{b}}{\textcolor{blue}{a}}}{2})^2-\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}}}$

Die Doppelbrüche können wir zusammenfassen, indem wir, anstatt durch zwei zu teilen, mit $\frac{1}{2}$ multiplizieren.

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{(\frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}})^2-\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}}}$

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{\frac{\textcolor{green}{b}^2}{4\cdot \textcolor{blue}{a}^2}-\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}}}$

Die Brüche unter der Wurzel können voneinander subtrahiert werden. Dazu erweitern wir zunächst den rechten Bruch mit $4\cdot a$ , sodass die Brüche gleichnamig sind; nun können wir die Zähler voneinander subtrahieren.

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{\frac{\textcolor{green}{b}^2}{4\cdot \textcolor{blue}{a}^2}-\frac{4 \cdot \textcolor{blue}{a} \cdot \textcolor{brown}{c}}{4\cdot \textcolor{blue}{a}^2}}$

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{\frac{\textcolor{green}{b}^2 - 4 \cdot \textcolor{blue}{a} \cdot \textcolor{brown}{c}}{4\cdot \textcolor{blue}{a}^2}}$

Im Nenner des Bruchs können wir nun die Wurzel ziehen - im Zähler bleibt sie natürlich erhalten.

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \frac{\sqrt{\textcolor{green}{b}^2 - 4 \cdot \textcolor{blue}{a} \cdot \textcolor{brown}{c}}}{2\cdot \textcolor{blue}{a}}$

Durch das Wurzelziehen erhalten wir zwei Brüche mit dem gleichen Nenner, die wir zusammenfassen können; wir erhalten die abc-Formel (Mitternachtsformel):

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{b^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Wie du siehst, ist die Herleitung der Mitternachtsformel recht lang und auch kompliziert. Herleitungen sind sehr hilfreich, um zu verstehen, warum wir eine bestimmte Formel verwenden können. Wichtig ist jedoch vor allem, dass du die Formel korrekt anwenden kannst.

Merke

Merke

Hier klicken zum Ausklappen

Für eine Gleichung der Form $\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0$ gilt:

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Mitternachtsformel: Mögliche Lösungen

Die Mitternachtsformel kann insgesamt drei Arten von Lösungen ergeben:

  • zwei reelle Lösungen
  • eine reelle Lösung
  • keine reelle Lösung

Welche Lösungsmenge vorliegt, hängt vom Term unterhalb der Wurzel ab. Man nennt diesen Term auch Diskriminante ($D$).

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}~~~~~~~~~~D = \textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}$

1. Die Diskriminante ist größer als null (D > 0)

Ergibt der Term unter der Wurzel eine positive Zahl, erhalten wir mit Hilfe der Mitternachtsformel zwei reelle Lösungen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$2\cdot x^2 - 8\cdot x+ 6 = 0$

$x_{1,2} = \frac{8~\pm~\sqrt{(-8)^2~-~4~ \cdot~2 \cdot~6}}{2~ \cdot~2}$

$x_{1,2} = \frac{8 \pm 4}{4}$

$x_1 = 1~~~~~x_2 = 3$

2. Die Diskriminante ist gleich null (D = 0)

Ergibt der Term unter der Wurzel genau null, erhalten wir mit Hilfe der Mitternachtsformel nur eine reelle Lösung.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$2\cdot x^2 - 8 \cdot x + 8 = 0$

$x_{1,2} = \frac{-(-8)~\pm~\sqrt{(-8)^2~-~4~ \cdot~2 \cdot~8}}{2~ \cdot~2}$

$x_{1,2} = \frac{8 \pm \sqrt{0}}{4}$

$x=2$

3. Die Diskriminante ist kleiner als null (D < 0)

Ergibt der Term unter der Wurzel eine negative Zahl, besitzt die quadratische Gleichung keine reelle Lösung.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$2\cdot x^2 -8 \cdot x + 9 = 0$

$x_{1,2} = \frac{-(-8)~\pm~\sqrt{(-8)^2~-~4~ \cdot~2 \cdot~9}}{2~ \cdot~2}$

$x_{1,2} = \frac{8 \pm \sqrt{-8}}{4}$

Merke

Merke

Hier klicken zum Ausklappen

Die Mitternachtsformel kann insgesamt drei Arten von Lösungen ergeben:

  • zwei reelle Lösungen ($D>0$)
  • eine reelle Lösung ($D=0$)
  • keine reelle Lösung ($D

Mitternachtsformel Beispielaufgabe: Quadratische Gleichungen mit Hilfe der Mitternachtsformel lösen

Nun möchten wir mit der Mitternachtsformel bzw. abc-Formel folgendes Beispiel berechnen. Dazu betrachten wir die quadratische Gleichung:

$2x^2 - 4 \cdot x - 16 = 0$

Mit Hilfe der Mitternachtsformel können wir die quadratische Gleichung sofort ausrechnen.

$\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0~~~~~~~\rightarrow~~~~\textcolor{blue}{2} \cdot x^2  \textcolor{green}{-4} \cdot x \textcolor{brown}{-16} = 0$

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}~~~~\rightarrow~~~~x_{1,2} = \frac{\textcolor{green}{-(-4)}~\pm~\sqrt{\textcolor{green}{(-4)}^2~-~4~ \cdot~\textcolor{blue}{2} \cdot~\textcolor{brown}{(-16)}}}{2~ \cdot~\textcolor{blue}{2}}$

$x_{1,2} = \frac{4 \pm \sqrt{144}}{4}$

$x_1= -2~~~~~~~~~x_2=4$

Vergleich: Mitternachtsformel und p-q-Formel

Quadratische Gleichungen kann man sowohl mit der Mitternachtsformel als auch mit der p-q-Formel lösen. Welche Formel du verwenden kannst, hängt von der Form ab, in der die quadratische Gleichung vorliegt.

Vergleich: p-q-Formel und Mitternachtsformel
Vergleich: p-q-Formel und Mitternachtsformel

Um mit der p-q-Formel zu rechnen, musst du die quadratische Gleichung zunächst in die Normalform bringen, indem du durch den Faktor vor dem $x^2$ dividierst. Bei dieser Umformung entstehen häufig Brüche, die du bei der Mitternachtsformel vermeiden kannst. Bei der Mitternachtsformel rechnest du nämlich direkt mit der allgemeinen Form der quadratischen Gleichung - in diesem Fall musst du in der Regel keine Umformung vornehmen. Die Mitternachtsformel ist also in den meisten Fällen direkt anwendbar. Auf der anderen Seite ist der mathematische Ausdruck der Mitternachtsformel deutlich komplizierter als der der p-q-Formel, sodass beim Benutzen der Mitternachtsformel häufiger Fehler passieren.

Welche Formel benutzt werden sollte, hängt also sowohl von der Aufgabe als auch vom persönlichen Empfinden ab. In der Regel empfiehlt sich die p-q-Formel als erste Wahl. Entstehen bei der Umformung in die Normalform jedoch Brüche, sollte man lieber auf die Mitternachtsformel ausweichen.

Dein neu erlerntes Wissen kannst du in unseren Übungsaufgaben zur Mitternachtsformel bzw. abc-Formel testen! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

In welchem Fall hat eine quadratische Gleichung keine reelle Lösung?

Teste dein Wissen!

Wie nennt man die Mitternachtsformel noch?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lautet die Mitternachtsformel richtig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Löse die quadratische Gleichung mit Hilfe der Mitternachtsformel und markiere das richtige Ergebnis.

(Brüche werden in Dezimalzahlen angegeben.)

$2\cdot x^2 - 3 \cdot x + 1 = 0$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8596