Online Lernen | Mathematik Aufgaben | Terme und Gleichungen Binomische Formeln 1. binomische Formel: Herleitung und Beispiele

1. binomische Formel: Herleitung und Beispiele

Die erste binomische Formel hilft dir beim Auflösen von Summen aus zwei Summanden zum Quadrat.

Merke

Merke

Hier klicken zum Ausklappen

1. binomische Formel

$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$

Rechnerische Herleitung der ersten binomischen Formel

Die binomischen Formeln leiten sich aus den Regeln zum Auflösen von Klammern ab. Für die Herleitung genügt es also den Term ohne Kenntnis der binomischen Formel aufzulösen.

Zunächst schreiben wir die Potenz aus:

$(a + b)^2 = (a + b) \cdot (a + b)$

Nun können wir die beiden Klammern ausmultiplizieren:

$(a + b) \cdot (a + b) = (a \cdot a) + (a \cdot b) + (b \cdot a) + (b \cdot b) = a^2 + (a \cdot b) + (b \cdot a) + b^2$

Die beiden mittleren Klammern haben den gleichen mathematischen Ausdruck und lassen sich zusammenfassen.

$a^2 + (a \cdot b) + (b \cdot a) + b^2 = a^2 + (a \cdot b) + (a \cdot b) + b^2 = a^2 + 2 \cdot a \cdot b + b^2$

Wir erhalten die erste binomische Formel.

Merke

Merke

Hier klicken zum Ausklappen

1. binomische Formel

$(\textcolor{blue}{a} \textcolor{green}{+} \textcolor{red}{b})^2 = \textcolor{blue}{a}^2 \textcolor{green}{+}  2 \cdot \textcolor{blue}{a} \cdot \textcolor{red}{b} + \textcolor{red}{b}^2$

Beispiele für die erste binomische Formel

Beispiel

Beispiel

Hier klicken zum Ausklappen
  • $(\textcolor{blue}{a} \textcolor{green}{+} \textcolor{red}{b})^2 = \textcolor{blue}{a}^2 \textcolor{green}{+}  2 \cdot \textcolor{blue}{a} \cdot \textcolor{red}{b} +\textcolor{red}{b}^2$
  • $(\textcolor{blue}{7} \textcolor{green}{+} \textcolor{red}{h})^2 = \textcolor{blue}{7}^2 \textcolor{green}{+}  2 \cdot \textcolor{blue}{7} \cdot \textcolor{red}{h} +\textcolor{red}{h}^2 = 49 + 14\cdot h + h^2$
  • $(\textcolor{blue}{x} \textcolor{green}{+} \textcolor{red}{9})^2 = \textcolor{blue}{x}^2 \textcolor{green}{+}  2 \cdot \textcolor{blue}{x} \cdot \textcolor{red}{9} +\textcolor{red}{9}^2 = x^2 + 18 \cdot x + 81$
  • $(\textcolor{blue}{2 \cdot x} \textcolor{green}{+} \textcolor{red}{y})^2 = \textcolor{blue}{4 \cdot x}^2 \textcolor{green}{+}  2 \cdot \textcolor{blue}{2\cdot x} \cdot \textcolor{red}{y} +\textcolor{red}{y}^2 = 4 \cdot x^2 + 4 \cdot x \cdot y + y^2$

Grafische Herleitung der ersten binomischen Formel

Da die binomischen Formeln einen quadratischen Ausdruck beschreiben, lässt sich die erste binomische Formel auch grafisch, mit Hilfe des Flächeninhalts, herleiten.

Grafischer Beweis der ersten binomischen Formel
Grafischer Beweis der ersten binomischen Formel

Die Flächeninhalte der Quadrate sind gleich groß, werden aber unterschiedlich errechnet. Der Flächeninhalt des linken Quadrats ergibt sich aus der Multiplikation der Seitenlängen:

$A_{links} = (a + b) \cdot (a + b) = (a + b)^2$

Im rechten Quadrat rechnen wir den Flächeninhalt aus, indem wir die Flächeninhalte kleinerer Flächen addieren. Wir zerlegen das große Quadrat in ein kleineres Quadrat mit den Seitenlängen $a$, ein weiteres kleines Quadrat mit den Seitenlängen $b$ und zwei Rechtecke mit den Seitenlängen $a$ und $b$. Daraus ergeben sich folgende Flächeninhalte:

  • $A_{1} = a^2$
  • $A_{2} = b^2$
  • $A_{3} = a \cdot b$

Rechnen wir die Flächeninhalte des rechten Quadrats nun zusammen und beachten dabei, dass das innere Rechteck mit den Seitenlängen $a$ und $b$ zweimal vorkommt, erhalten wir folgenden Gesamtausdruck:

$A_{rechts}= a^2 + 2\cdot a\cdot b + b^2$

Da der Flächeninhalt des rechten gleich dem des linken Quadrates ist, gilt:

$A_{links} =A_{rechts}$

$ (a+b)^2 = a^2 + 2\cdot a\cdot b + b^2$

Wir erhalten die erste binomische Formel.

Nun hast du einen Überblick darüber erhalten, wie die erste binomische Formel gebildet wird. Schau zur Vertiefung auch in die Übungen! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7850