Diese Formeln brauchst du zum Dreieck berechnen!

Mathematik > Geometrie
Diese Formeln brauchst du zum Dreieck berechnen! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Text erklären wir dir, wie du bei der Dreiecksberechnung vorgehst. Dazu zeigen wir dir an Beispielen, wie du den Umfang und Flächeninhalt eines Dreiecks unter Verwendung bestimmter Formeln berechnen kannst.

Hier erhältst du einen kurzen Überblick zur Flächenberechnung eines Dreiecks:

Merke

Formeln zur Berechnung:

  • Umfang Dreieck 

    $U = a+ b + c$.

  • Fläche Dreieck

    $A_{Dreieck} = \frac{g \cdot h}{2} = \frac{1}{2} \cdot g \cdot h$

Das Dreieck

Ein Dreieck besitzt drei Punkte (Ecken), die in der Regel gegen den Uhrzeigersinn mit Großbuchstaben benannt werden ($A, B, C$). Die drei Seiten des Dreiecks werden mit den entsprechenden Kleinbuchstaben beschriftet. Dabei werden die Seiten nach den gegenüberliegenden Punkten benannt. Gegenüber des Punktes $B$ liegt also beispielsweise die Seite $b$.

allgemeine Darstellung eines Dreiecks
allgemeine Darstellung eines Dreiecks

Ebenfalls wichtig sind die Innenwinkel des Dreiecks. Diese werden mit den griechischen Buchstaben $\alpha$ (Alpha), $\beta$ (Beta) und $\gamma$ (Gamma) bezeichnet.

Gut zu wissen

Innenwinkelsatz: $\alpha + \beta + \gamma = 180°$

Umfang eines Dreiecks berechnen

Der Umfang des Dreiecks lässt sich sehr einfach berechnen. Er ist die Summe aller Seitenlängen. Es gilt also:

Merke

$U  = a+ b + c$.

Um den Umfang eines Dreiecks berechnen zu können, müssen alle drei Seitenlängen bekannt sein. Genauso kann es sein, dass der Umfang und zwei Seitenlängen gegeben sind und du die fehlende Seitenlänge berechnen musst. Dazu musst du die Formel umstellen.

Beispiel

Wir groß ist der Umfang?

$U  = a+ b + c$

Beispiel

Wie groß ist $a$?

$a = U - b - c$

Beispiel

Wie groß ist $b$?

$b = U - a - c$

Beispiel

Wie groß ist $c$?

$c = U - a - b$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Flächeninhalt eines Dreiecks berechnen

Um den Flächeninhalt eines Dreiecks berechnen zu können, benötigen wir eine weitere Größe: die Höhe. Die Höhe eines Dreiecks ist ein Lot, das von einem Punkt auf die gegenüberliegende Seite gefällt wird. Dementsprechend existieren in einem Dreieck drei unterschiedliche Höhen. Für den Flächeninhalt benötigen wir aber nur eine; in unserem Beispiel die Höhe auf die Seite $c$ ($h_c$).

Dreieck mit Höhe
Dreieck mit Höhe

Durch das Einzeichnen der Höhe teilen wir das Dreieck in zwei rechtwinklige Dreiecke. Diese Dreiecke werden nun an ihren längsten Seiten mit einem kongruenten Dreieck ergänzt, das so gedreht wird, dass sich ein Rechteck bildet.

Erweiterung des Dreiecks zum Rechteck
Erweiterung des Dreiecks zum Rechteck

Das Ergänzen der Dreiecke musst du zum Glück nicht jedes Mal aufs Neue machen, um den Flächeninhalt des Dreiecks zu berechnen. Wir erhalten nämlich eine Formel, mit deren Hilfe wir den Flächeninhalt in Zukunft ganz einfach berechnen können. Betrachten wir die geometrische Figur als Ganzes, erhalten wir ein Rechteck mit den Seitenlängen $c$ und $h_c$. Ganz allgemein bezeichnet man $h_c$ als Höhe und $c$ als die Grundseite. Um den Flächeninhalt des Rechtecks zu berechnen, müssen wir die Seitenlängen multiplizieren.

$A_{Rechteck} = g \cdot h =$ Grundseite $\cdot$ Höhe

Diese Formel können wir für unser Dreieck aber nicht einfach übernehmen, da wir uns ja Flächen dazu gedacht haben, um ein Rechteck zu bilden. Wir müssen den Flächeninhalt des Rechtecks noch durch $2$ teilen, um auf den Flächeninhalt des Dreiecks zu kommen.

$A_{Dreieck} = \frac{g \cdot h}{2} = \frac{1}{2} \cdot g \cdot h$

Merke

Berechnung des Flächeninhalts:

$A_{Dreieck} = \frac{g \cdot h}{2} = \frac{1}{2} \cdot g \cdot h$

Beispiel

Wie groß ist der Flächeninhalt eines Dreiecks mit der Höhe $5~cm$ und der Seitenlänge $c = 3cm$?

$A_{Dreieck} = \frac{1}{2} \cdot 5~cm \cdot 3~cm = 7,5cm^2$

Nun kennst du die Dreieck-Formeln für den Umfang und den Flächeninhalt und kannst Berechnungen an einem Dreieck durchführen. Teste dein neu erlerntes Wissen zum Thema Dreieck berechnen online mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie groß ist der Umfang $U$ eines Dreiecks mit folgenden Seitenlängen?

  • $a=3cm$
  • $b=7cm$
  • $c=12cm$
Teste dein Wissen!

Wie werden die Seiten eines Dreiecks benannt?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist der Flächeninhalt $A$ eines Dreiecks mit der Höhe $h_c=5cm$ und der Seite $c=12cm$?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie viele Höhen kann man in ein Dreieck einzeichnen? Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.05.2025
Alles zu bester Zufriedenheit!
09.05.2025
Sehr flexibel bezüglich Zeiten und Änderung von Fächern.
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8573