Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen

Mathematik > Geometrie
Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Sowohl Rechtecke als auch Quadrate zählen zur Gruppe der Vierecke. Sie unterscheiden sich aber in den Kantenlängen. Bei einem Quadrat sind alle vier Seiten gleich lang. Bei einem Rechteck sind nur die gegenüberliegenden Flächen gleich lang. Am besten lässt sich dieser Unterschied anhand einer Abbildung erklären:

Quadrat (links) und Rechteck (rechts)
Quadrat (links) und Rechteck (rechts)

Ein Quadrat ist also eine besondere Form des Rechtecks, bei dem gilt $a=b$.

Flächeninhalt von Rechtecken

Die Flächenberechnung funktioniert bei beiden Figuren gleich und kann sowohl geometrisch als auch rechnerisch erfolgen. Bestimmen wir den Flächeninhalt zunächst über die geometrische Methode. Dabei setzen wir das Rechteck auf ein Raster aus einzelnen Quadratzentimetern und addieren die Felder. Jedes einzelne dieser Kästchen ist also 1 cm hoch und lang. Dies würde genauso gut in deinem karierten Matheheft funktionieren. Beachte aber dabei, dass ein Kästchen nicht, wie in diesem Beispiel, einem Quadratzentimeter ($1cm^2$) entspricht, sondern in der Regel $0,25 cm^2$.

Flächeninhalt des Rechtecks
Flächeninhalt des Rechtecks

Zählen wir nun gemeinsam alle einzelnen Kästchen, erhalten wir 8 Kästchen in einer Reihe. Insgesamt liegen vier solcher Reihen aufeinander, wodurch wir auf insgesamt 32 Kästchen kommen.  Die Umrechnung auf Quadratzentimeter ist in diesem Fall sehr einfach: wir erhalten $32 cm^2$.

Bei einfachen Rechtecken lässt sich diese Methode sehr gut anwenden. Um aber auch bei größeren Figuren zu einem Ergebnis zu kommen, ohne die einzelnen Quadratzentimeter zählen und addieren zu müssen, gibt es eine sehr einfache, rechnerische Methode, mit der man den Flächeninhalt berechnen kann. Wir haben gesagt, dass jedes einzelne Kästchen eine Kantenlänge von $1 cm$ hat. Die lange, untere Seite muss also 8 cm lang sein. Die Höhe des Rechtecks sind 4 Kästchen, also $4 cm$. Multipliziere ich nun die beiden Kantenlängen miteinander, erhalte ich den Flächeninhalt:

$8 cm \cdot 4 cm = 32cm^2$

Merke

Der Flächeninhalt $A$ eines Rechteckes ergibt sich aus dem Produkt seiner Seitenlängen:

$A=a \cdot b$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Umfang von Rechtecken

Eine zweite Größe, die man bei Figuren berechnen kann, ist der Umfang. Bei Rechtecken und Quadraten ist auch dies denkbar einfach. Du addierst einfach alle Kantenlängen miteinander. Für das oben gezeigte Rechteck lässt sich also folgender Umfang berechnen:

$U(=Umfang) = 8cm + 4cm +8cm +4cm$

Merke

Der Umfang $U$ eines Rechteckes ergibt sich aus der Addition der Seitenlängen:

$U= 2 \cdot (a + b)$

Flächeninhalt und Umfang bei Quadraten

Bei Quadraten funktionieren diese Rechnungen genauso, nur dass alle Längen gleich sind.

Der Flächeninhalt $A$ eines Quadrats errechnet sich auch aus dem Produkt der Seitenlängen:

$A=a \cdot a = a^2$

Für den Umfang $U$ eines Quadrats gilt: $U=4\cdot a$

Die simplen Berechnungen für Flächeninhalt und Umfang bei Rechtecken werden wir in den folgenden Beispielen immer wieder benutzen. Bei komplizierteren Formen geht man in der Regel so vor, dass man die Figur in Rechtecke zerlegt, um möglichst einfach auf ein Ergebnis zu kommen.

Rechteck berechnen: Beispiel

Führen wir nun eine Beispielrechnung durch. Versuche die Lösung zunächst selbst zu bestimmen und schau sie dir dann hier an. 

Berechne nun den Umfang (U) und den Flächeninhalt (A) eines Rechtecks. Die Seitenlängen sind dabei $a=6 cm$ und $b=3 cm$

Rechteck: Fläche und Umfang berechnen
Rechteck: Fläche und Umfang berechnen

Beginnen wir mit der Berechnung des Umfangs unseres Rechtecks. Gemäß der Formel, die du ja schon kennengelernt hast, berechnest du den Umfang mit: $2\cdot (a+b)$. Setzen wir in diese Formel nun unsere Werte für a (6 cm) und b (3 cm) ein und du erhältst $U=  2\cdot (6cm+3cm)$. Wenn wir das ausrechnen, bekommen wir $2 \cdot 9cm$ und das ergibt $18cm$. Der Umfang beträgt also $U = 18 cm$.

Als nächstes wollen wir uns mit der Berechnung der Fläche auseinandersetzen. Wir nehmen die bekannte Formel ( A = a $\cdot$ b) und setzen auch hier unsere Werte ein: $A = 6cm\cdot 3cm$. Du erhältst den Flächeninhalt $A = 18 cm^2$. Bist du auf die gleichen Lösungen gekommen?

Teste und vertiefe dein neues Wissen jetzt auch in den Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Berechne Flächeninhalt und Umfang des Rechtecks über die geometrische und/oder die rechnerische Methode. Ein Kästchen entspricht einem Quadratzentimeter.

Rechteck

Teste dein Wissen!

Welche Aussagen über das Rechteck sind korrekt? Markiere die richtigen Antworten.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie viele Seiten eines Rechtecks sind gleich lang?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie viele Seiten eines Quadrats sind gleich lang?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8580