Mathematik > Geometrie

Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen

Inhaltsverzeichnis:

Sowohl Rechtecke als auch Quadrate zählen zur Gruppe der Vierecke. Sie unterscheiden sich aber in den Kantenlängen. Bei einem Quadrat sind alle vier Seiten gleich lang. Bei einem Rechteck sind nur die gegenüberliegenden Flächen gleich lang. Am besten lässt sich dieser Unterschied anhand einer Abbildung erklären:

Quadrat (links) und Rechteck (rechts)
Quadrat (links) und Rechteck (rechts)

Ein Quadrat ist also eine besondere Form des Rechtecks, bei dem gilt $a=b$.

Flächeninhalt von Rechtecken

Die Flächenberechnung funktioniert bei beiden Figuren gleich und kann sowohl geometrisch als auch rechnerisch erfolgen. Bestimmen wir den Flächeninhalt zunächst über die geometrische Methode. Dabei setzen wir das Rechteck auf ein Raster aus einzelnen Quadratzentimetern und addieren die Felder. Jedes einzelne dieser Kästchen ist also 1 cm hoch und lang. Dies würde genauso gut in deinem karierten Matheheft funktionieren. Beachte aber dabei, dass ein Kästchen nicht, wie in diesem Beispiel, einem Quadratzentimeter ($1cm^2$) entspricht, sondern in der Regel $0,25 cm^2$.

Flächeninhalt des Rechtecks
Flächeninhalt des Rechtecks

Zählen wir nun gemeinsam alle einzelnen Kästchen, erhalten wir 8 Kästchen in einer Reihe. Insgesamt liegen vier solcher Reihen aufeinander, wodurch wir auf insgesamt 32 Kästchen kommen.  Die Umrechnung auf Quadratzentimeter ist in diesem Fall sehr einfach: wir erhalten $32 cm^2$.

Bei einfachen Rechtecken lässt sich diese Methode sehr gut anwenden. Um aber auch bei größeren Figuren zu einem Ergebnis zu kommen, ohne die einzelnen Quadratzentimeter zählen und addieren zu müssen, gibt es eine sehr einfache, rechnerische Methode, mit der man den Flächeninhalt berechnen kann. Wir haben gesagt, dass jedes einzelne Kästchen eine Kantenlänge von $1 cm$ hat. Die lange, untere Seite muss also 8 cm lang sein. Die Höhe des Rechtecks sind 4 Kästchen, also $4 cm$. Multipliziere ich nun die beiden Kantenlängen miteinander, erhalte ich den Flächeninhalt:

$8 cm \cdot 4 cm = 32cm^2$

Merke

Merke

Hier klicken zum Ausklappen

Der Flächeninhalt $A$ eines Rechteckes ergibt sich aus dem Produkt seiner Seitenlängen:

$A=a \cdot b$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Umfang von Rechtecken

Eine zweite Größe, die man bei Figuren berechnen kann, ist der Umfang. Bei Rechtecken und Quadraten ist auch dies denkbar einfach. Du addierst einfach alle Kantenlängen miteinander. Für das oben gezeigte Rechteck lässt sich also folgender Umfang berechnen:

$U(=Umfang) = 8cm + 4cm +8cm +4cm$

Merke

Merke

Hier klicken zum Ausklappen

Der Umfang $U$ eines Rechteckes ergibt sich aus der Addition der Seitenlängen:

$U= 2 \cdot (a + b)$

Flächeninhalt und Umfang bei Quadraten

Bei Quadraten funktionieren diese Rechnungen genauso, nur dass alle Längen gleich sind.

Der Flächeninhalt $A$ eines Quadrats errechnet sich auch aus dem Produkt der Seitenlängen:

$A=a \cdot a = a^2$

Für den Umfang $U$ eines Quadrats gilt: $U=4\cdot a$

Die simplen Berechnungen für Flächeninhalt und Umfang bei Rechtecken werden wir in den folgenden Beispielen immer wieder benutzen. Bei komplizierteren Formen geht man in der Regel so vor, dass man die Figur in Rechtecke zerlegt, um möglichst einfach auf ein Ergebnis zu kommen.

Rechteck berechnen: Beispiel

Führen wir nun eine Beispielrechnung durch. Versuche die Lösung zunächst selbst zu bestimmen und schau sie dir dann hier an. 

Berechne nun den Umfang (U) und den Flächeninhalt (A) eines Rechtecks. Die Seitenlängen sind dabei $a=6 cm$ und $b=3 cm$

Rechteck: Fläche und Umfang berechnen
Rechteck: Fläche und Umfang berechnen

Beginnen wir mit der Berechnung des Umfangs unseres Rechtecks. Gemäß der Formel, die du ja schon kennengelernt hast, berechnest du den Umfang mit: $2\cdot (a+b)$. Setzen wir in diese Formel nun unsere Werte für a (6 cm) und b (3 cm) ein und du erhältst $U=  2\cdot (6cm+3cm)$. Wenn wir das ausrechnen, bekommen wir $2 \cdot 9cm$ und das ergibt $18cm$. Der Umfang beträgt also $U = 18 cm$.

Als nächstes wollen wir uns mit der Berechnung der Fläche auseinandersetzen. Wir nehmen die bekannte Formel ( A = a $\cdot$ b) und setzen auch hier unsere Werte ein: $A = 6cm\cdot 3cm$. Du erhältst den Flächeninhalt $A = 18 cm^2$. Bist du auf die gleichen Lösungen gekommen?

Teste und vertiefe dein neues Wissen jetzt auch in den Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne Flächeninhalt und Umfang des Rechtecks über die geometrische und/oder die rechnerische Methode. Ein Kästchen entspricht einem Quadratzentimeter.

Rechteck

Teste dein Wissen!

Welche Aussagen über das Rechteck sind korrekt? Markiere die richtigen Antworten.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie viele Seiten eines Rechtecks sind gleich lang?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie viele Seiten eines Quadrats sind gleich lang?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8580