Suche
Kontakt
>
Mathematik > Geometrie

Besondere & ausgezeichnete Punkte im Dreieck

Besondere & ausgezeichnete Punkte im Dreieck! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In einem Dreieck gibt es bestimmte Punkte, die man für verschiedene Berechnungen benötigt. Diese sogenannten ausgezeichneten Punkte des Dreiecks können nicht einfach aus dem Dreieck abgelesen werden, sondern werden mithilfe geometrischer Konstruktionen am Dreieck bestimmt. Schauen wir uns nun die vier klassischen ausgezeichneten Punkte eines Dreiecks näher an. 

Höhenschnittpunkt ($H$)

Die Höhe eines Dreiecks ist ein Lot, dass von einem Eckpunkt des Dreiecks auf die gegenüberliegende Seite gefällt wird. Dementsprechend besitzt ein Dreieck drei unterschiedliche Höhen. Der Schnittpunkt dieser drei Höhen ist der sogenannte Höhenschnittpunkt, den man mit $H$ bezeichnet.

Merke

Der Höhenschnittpunkt $H$ ist der Schnittpunkt aller drei Höhen eines Dreiecks.

Höhenschnittpunkt eines Dreieck
Höhenschnittpunkt eines Dreiecks

In einem spitzwinkligen Dreieck liegt der Höhenschnittpunkt innerhalb des Dreiecks. Hat das Dreieck einen stumpfen Winkel (über $90°$) liegt $H$ außerhalb des Dreiecks. In einem rechtwinkligen Dreieck stimmt der Höhenschnittpunkt mit dem Scheitel des rechten Winkels überein.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Umkreismittelpunkt ($U$)

Der Umkreismittelpunkt eines Dreiecks wird mithilfe der Mittelsenkrechten konstruiert. Das Dreieck besitzt pro Seite eine Mittelsenkrechte. Der Schnittpunkt der drei Mittelsenkrechten ist der Mittelpunkt des Umkreises. Dieser Umkreis hat zu allen Eckpunkten des Dreiecks denselben Abstand.

Umkreismittelpunkt eines Dreiecks
Umkreismittelpunkt eines Dreiecks

Merke

Der Umkreismittelpunkt $U$ ist der Schnittpunkt aller drei Mittelsenkrechten eines Dreiecks.

Inkreismittelpunkt ($I$)

Der Inkreis eines Dreiecks ist ein Kreis, der alle Seiten des Dreiecks von innen berührt. Der Mittelpunkt dieses Kreises ist der Schnittpunkt aller Winkelhalbierenden. Eine Winkelhalbierende ist eine Halbgerade, die einen Winkel in zwei gleich große Teile teilt. Lerne hier mehr über das Einzeichnen von Winkelhalbierenden.

Inkreismittelpunkt eines Dreiecks
Inkreismittelpunkt eines Dreiecks

Merke

Der Inkreismittelpunkt $I$ ist der Schnittpunkt der Winkelhalbierenden eines Dreiecks.

Schwerpunkt ($S$)

Der Schwerpunkt ist eine Art Mittelwert. Er ist der Punkt, an dem die die Fläche des Dreiecks im Gleichgewicht steht. Wir könnten ein ausgeschnittenes Dreieck also mit seinem Schwerpunkt auf eine Bleistiftspitze setzen und es würde nicht herunterfallen. Um den Schwerpunkt des Dreiecks zu bestimmen, müssen wir die Seitenhalbierenden des Dreiecks konstruieren. Die Seitenhalbierenden des Dreiecks sind Strecken, die einen Eckpunkt mit dem Mittelpunkt der gegenüberliegenden Seite verbinden. Der Schnittpunkt aller drei Seitenhalbierenden ist der Schwerpunkt des Dreiecks.

Schwerpunkt eines Dreiecks
Schwerpunkt eines Dreiecks

Merke

Der Schwerpunkt $S$ ist der Schnittpunkt der Seitenhalbierenden eines Dreiecks.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben. Viel Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Der Schwerpunkt eines Dreiecks ist...

Teste dein Wissen!

Welche Aussage ist wahr?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtige(n) Aussage(n)!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtige(n) Aussage(n)!

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

17.06.2024 , von Tilo R.
Wenn es der kleinen Spaß macht zu lernen gibt es nicht besseres
12.06.2024 , von Kacper B.
Sowohl unsere Tochter als auch wir sind mit der initialen Beratung und Nachhilfe sehr zufrieden.
11.06.2024 , von Nadine D.
Unsere Tochter hat ihre Note innerhalb eines halben Jahres um zwei Noten verbessert. Nun können wir flexibel ein weiteres Fach dazu wählen. Das Ergebnis passt und die Flexibilität sorgt dafür, dass der Vertrag über zwei Jahre optimal genutzt werden kann. Absolute Weiterempfehlung!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7786