Besondere & ausgezeichnete Punkte im Dreieck

Mathematik > Geometrie
Besondere & ausgezeichnete Punkte im Dreieck! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In einem Dreieck gibt es bestimmte Punkte, die man für verschiedene Berechnungen benötigt. Diese sogenannten ausgezeichneten Punkte des Dreiecks können nicht einfach aus dem Dreieck abgelesen werden, sondern werden mithilfe geometrischer Konstruktionen am Dreieck bestimmt. Schauen wir uns nun die vier klassischen ausgezeichneten Punkte eines Dreiecks näher an. 

Höhenschnittpunkt ($H$)

Die Höhe eines Dreiecks ist ein Lot, dass von einem Eckpunkt des Dreiecks auf die gegenüberliegende Seite gefällt wird. Dementsprechend besitzt ein Dreieck drei unterschiedliche Höhen. Der Schnittpunkt dieser drei Höhen ist der sogenannte Höhenschnittpunkt, den man mit $H$ bezeichnet.

Merke

Der Höhenschnittpunkt $H$ ist der Schnittpunkt aller drei Höhen eines Dreiecks.

Höhenschnittpunkt eines Dreieck
Höhenschnittpunkt eines Dreiecks

In einem spitzwinkligen Dreieck liegt der Höhenschnittpunkt innerhalb des Dreiecks. Hat das Dreieck einen stumpfen Winkel (über $90°$) liegt $H$ außerhalb des Dreiecks. In einem rechtwinkligen Dreieck stimmt der Höhenschnittpunkt mit dem Scheitel des rechten Winkels überein.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Umkreismittelpunkt ($U$)

Der Umkreismittelpunkt eines Dreiecks wird mithilfe der Mittelsenkrechten konstruiert. Das Dreieck besitzt pro Seite eine Mittelsenkrechte. Der Schnittpunkt der drei Mittelsenkrechten ist der Mittelpunkt des Umkreises. Dieser Umkreis hat zu allen Eckpunkten des Dreiecks denselben Abstand.

Umkreismittelpunkt eines Dreiecks
Umkreismittelpunkt eines Dreiecks

Merke

Der Umkreismittelpunkt $U$ ist der Schnittpunkt aller drei Mittelsenkrechten eines Dreiecks.

Inkreismittelpunkt ($I$)

Der Inkreis eines Dreiecks ist ein Kreis, der alle Seiten des Dreiecks von innen berührt. Der Mittelpunkt dieses Kreises ist der Schnittpunkt aller Winkelhalbierenden. Eine Winkelhalbierende ist eine Halbgerade, die einen Winkel in zwei gleich große Teile teilt. Lerne hier mehr über das Einzeichnen von Winkelhalbierenden.

Inkreismittelpunkt eines Dreiecks
Inkreismittelpunkt eines Dreiecks

Merke

Der Inkreismittelpunkt $I$ ist der Schnittpunkt der Winkelhalbierenden eines Dreiecks.

Schwerpunkt ($S$)

Der Schwerpunkt ist eine Art Mittelwert. Er ist der Punkt, an dem die die Fläche des Dreiecks im Gleichgewicht steht. Wir könnten ein ausgeschnittenes Dreieck also mit seinem Schwerpunkt auf eine Bleistiftspitze setzen und es würde nicht herunterfallen. Um den Schwerpunkt des Dreiecks zu bestimmen, müssen wir die Seitenhalbierenden des Dreiecks konstruieren. Die Seitenhalbierenden des Dreiecks sind Strecken, die einen Eckpunkt mit dem Mittelpunkt der gegenüberliegenden Seite verbinden. Der Schnittpunkt aller drei Seitenhalbierenden ist der Schwerpunkt des Dreiecks.

Schwerpunkt eines Dreiecks
Schwerpunkt eines Dreiecks

Merke

Der Schwerpunkt $S$ ist der Schnittpunkt der Seitenhalbierenden eines Dreiecks.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben. Viel Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Der Schwerpunkt eines Dreiecks ist...

Teste dein Wissen!

Welche Aussage ist wahr?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtige(n) Aussage(n)!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtige(n) Aussage(n)!

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
06.06.2025
Meine Tochter ging 1x pro Woche für Deusch Nachhilfe zum Studienkreis und verbesserte sich in 3 Monaten von Note 5 auf Note 2 :-))
06.06.2025
Mein Sohn hat seine Noten verbessert.Vladimir ist sehr guter Leiter ,er war immer erreichbar und wenn mein Sohn krank war ,er konnte Unterricht nachholen.
31.05.2025
Super nettes Personal.. Hab schon das zweite Kind angemeldet, sie gehen auf die Bedürfnisse der Kinder ein.. Termine sind einfach und persönlich bzw telefonisch sehr gut zu organisieren. Fr. Wagner in Rosenheim ist wirklich sehr bemüht und in allem zu helfen. Kann ich nur empfehlen!!!

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7786