Mathematik > Geometrie

Drachenviereck - Flächeninhalt und Konstruktion

Inhaltsverzeichnis:

In diesem Text erfährst du alles, was du über Drachenvierecke wissen solltest: Welche Eigenschaften sie haben und wie du den Flächeninhalt und den Umfang berechnen kannst.

Eigenschaften

Ein Drachenviereck hat immer eine Spiegelachse in der Mitte. Die Spiegelachse wird durch die Diagonale gebildet. Das typische Drachenviereck sieht so aus:

drache2
Abbildung: Drachenviereck mit zwei Diagonalen

Dieses Drachenviereck ist symmetrisch zu einer Diagonalen. Die Diagonale ist hier blau gekennzeichnet. Die andere Diagonale ist grün gekennzeichnet. Trennen wir das Viereck durch die grüne Diagonale, entstehen zwei gleichschenklige Dreiecke.

Woher der Name Drachenviereck kommt, kannst du dir vielleicht schon denken:

drache1a
Abbildung: Drache

Da Drachenvierecke eine Spiegelachse haben, ergeben sich weitere Besonderheiten.

  1.  die Seiten, die sich gegenüberliegen, sind gleich lang
  2.  die beiden Diagonalen stehen senkrecht aufeinander
  3.  die Spiegelachse halbiert die andere Diagonale

Formeln zur Berechnung

Schauen wir uns ein paar Formeln zu Berechnungen an einem Drachenviereck an:

Methode

Methode

Hier klicken zum Ausklappen

Flächeninhalt:

$A = \frac {1}{2} h \cdot c$

Umfang:

$U = 2 \cdot (a+b)$

Die Bedeutung der Abkürzungen $h, c, a $ und $b$ ist hier dargestellt:

drache_bezeichnungen
Abbildung: Drache mit Bezeichnungen
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Herleitung der Formeln

Hier schauen wir uns an, wie die Formeln zur Berechnung erklärt werden können.

Flächeninhalt

Betrachten wir folgendes Bild:

drache_faecheninhalt
Abbildung: Flächeninhalt Drache

Der Flächeninhalt von einem Drachenvieleck ist die Höhe (also die Länge der einen Diagonale) mal der Breite (die Länge der anderen Diagonale) geteilt durch zwei. In der Abbildung können wir erkennen, dass der Flächeninhalt von dem Drachenviereck in die Hälfte des Rechtecks hineinpasst. So kannst du dir die Formel ganz einfach merken.

Umfang:

Es ist klar, dass alle Seitenlängen einfach addiert werden müssen. Da die Längen zweimal vorkommen, ergibt sich:

$U = 2\cdot (a+b)$

Beispielaufgabe

Schauen wir uns eine Beispielaufgabe an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Berechne den Flächeninhalt und den Umfang dieses Drachenvierecks:

drache_aufgabe
Abbildung: Drache mit Längenangaben

Den Umfang berechnen wir, indem wir die Längen der Seiten zusammenrechnen:

$U = 2 \cdot (20 cm + 34 cm) = 108 cm$

Den Flächeninhalt erhalten wir, indem wir die Höhe mal die Breite rechnen und durch zwei teilen.

$A = \frac{1}{2} *42 cm \cdot 32 cm = 672 cm^2$

Mit den Übungsaufgaben kannst du dich testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie groß ist der Umfang eines Drachenvierecks mit folgenden Seitenlängen:

  • $a = 3 cm$
  • $b = 2 cm$
Teste dein Wissen!

Wie groß ist der Flächeninhalt eines Drachenvierecks mit folgenden Maßen?

  • Höhe $= 5 cm$
  • Breite $= 2 cm$
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist der Flächeninhalt des Drachenvierecks?

aufgabe_drache

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was sind die richtigen Formeln, um den Flächeninhalt und den Umfang eines Drachenvierecks zu berechnen?

drache_bezeichnungen

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7810