Was ist eine Strecke, eine Halbgerade und eine Gerade?
Dieser Text beschäftigt sich mit den Begriffen Punkt, Gerade, Halbgerade und Strecke. Hier wird also einzeln aufgeschlüsselt wofür du und wie du alles bestimmst und benutzen kannst.
Was ist ein Punkt?
Mehrere Punkte bilden in der Mathematik eine geometrische Figur. Definiert wird der Punkt als Schnittstelle zweier Geraden.
Merke
Merke
Der Punkt ist die Schnittstelle zweier Geraden. Er ist starr und hat keine Ausdehnung, wie etwa eine Linie.

Was ist eine Strecke?
Die Strecke ist in der Geometrie eine Linie, die zwei Punkte verbindet. Diese Linie ist die kürzeste Verbindung zwischen den beiden Punkten. Die Punkte, die eine Strecke definieren, nennt man auch Start- bzw. Endpunkte.
Merke
Merke
Eine Strecke ist eine Linie, die zwei Punkte auf kürzestem Wege verbindet.

Bei der Abbildung oben erkennen wir die Linien a und b. Diese verbinden die Punkte A und B miteinander. Jedoch ist nur die Linie a auch eine Strecke, da sie den kürzesten Abstand zwischen den beiden Punkten bildet. Die Verbindungslinie b ist ein Halbkreis, l dieser hat nicht den kürzesten Abstand zwischen A und B.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Halbgerade und Gerade
Merke
Merke
Eine Halbgerade auch Strahl genannt hat einen Startpunkt, aber keinen Endpunkt hat.
Eine Halbgerade ist eine Gerade, die an einem bestimmten Punkt beginnt, aber kein Ende hat. Sie geht ins Unendliche. Später wird diese Form der geometrischen Darstellung auch unter dem Begriff Strahl vorkommen, etwa bei den Strahlensätzen.
In der folgenden Abbildung wird ein Strahl, bzw. eine Halbgerade dargestellt.

Merke
Merke
Eine Gerade ist eine geometrische Figur die unendlich lang, unendlich dünn und in beide Richtungen unbegrenzt ist.
Eine Gerade ist also eine Strecke, die über die beiden Punkte hinaus geht, somit weder Start- noch Endpunkt haben. Wenn wir eine Gerade zeichnen wollen, zeichnen wir eine Strecke zwischen zwei Punkten und gehen dann mit der Linie über die beiden Punkte hinaus, um eine Gerade zu erhalten.
Die Lage von Geraden zueinander
Wenn wir zwei Geraden in einem Koordinatensystem eintragen, können diese genau drei verschiedene Beziehungen zueinander haben.
Eine Möglichkeit ist, dass Geraden zueinander parallel sind. Hierbei treffen sich die beiden Geraden niemals, egal wo sie im Koordinatensystem betrachtet werden.
Sie können aber auch gleich sein. Hierbei entsprechen sich die beiden Geraden und haben somit unendlich viele Schnittpunkte.
Die letzte Möglichkeit sind sich schneidende Geraden. Hierbei treffen die Geraden aufeinander und bilden einen Schnittpunkt. Ein Spezialfall sind orthogonale Geraden. Hierbei treffen zwei Geraden in einem 90° Winkel aufeinander.

In der Abbildung sind die grüne und die blaue Gerade parallel zueinander. Die rote Gerade ist orthogonal zu den beiden anderen Geraden, hat also jeweils einen Schnittpunkt mit beiden.
Dein neu erlerntes Wissen kannst du mit unseren Übungsaufgaben festigen. Viel Erfolg!
Teste dein Wissen!
Bestimme die richtige Aussage.
Was zeichnet einen Punkt aus?
Was ist der Unterschied zwischen einer Gerade und einer Halbgerade?
Wie können zwei Geraden zueinander liegen?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema















Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen