Regelmäßige Vielecke konstruieren und berechnen

Mathematik > Geometrie
Regelmäßige Vielecke konstruieren und berechnen! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Text erklären wir dir, welche Arten von Vielecken es gibt und wie du den Flächeninhalt und Umfang berechnen kannst.

Regelmäßige Vielecke

Die bekanntesten Vielecke sind regelmäßige Vielecke. Die Besonderheit an ihnen ist, dass alle Seiten gleich lang sind und alle Innenwinkel gleich groß.
Schauen wir uns zwei Beispiele an: ein Fünfeck und ein Achteck.

vielecke
Abbildung: regelmäßiges Fünf- und Achteck

Vielleicht siehst du es nicht auf den ersten Blick, aber bei einem regelmäßigen Viereck haben alle Seiten die gleiche Länge und auch der Winkel zwischen den Seiten ist jeweils der gleiche.

Formeln zur Berechnung von Flächeninhalt, Umfang und Innenwinkel

Hier bekommst du eine Übersicht über alle wichtigen Formeln:

Methode

Flächeninhalt:

$A = \frac{n \cdot a^2}{4 \cdot tan ( \frac{180^\circ}{n})}$

Umfang:

$U = n \cdot a$

Innenwinkel:

$\alpha = \frac {n-2}{n} \cdot 180^\circ$

Dabei ist $n$: Anzahl der Ecken oder der Seiten und $a$: Seitenlänge.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Beispielaufgabe

Berechne mit der Angabe den Flächeninhalt und die Innenwinkel.

beispielaufgabe_vieleck
Abbildung: Beispielaufgabe Vieleck

Versuche den Flächeninhalt und die Größe der Innenwinkel zu berechnen. Gegeben ist der Umfang. Er beträgt $U = 84 cm$. Wenn du nicht weiter weißt, kannst du dir die Lösung anschauen.

Vertiefung

Hier klicken zum Ausklappen
Lösung

Der Umfang ist gegeben, er beträgt $84 cm$. Außerdem können wir die Seiten in der Abbildung zählen. Damit können wir dann die Seitenlänge berechnen.

$U = n \cdot a$            $| :n$
$a = \frac {U}{n}$

Also zählen wir zuerst die Seiten oder die Ecken. Es sind insgesamt $7$ Stück. Anschließend können wir die Länge einer Seite ($a$) berechnen:

$a = \frac {U}{n} = \frac {84 cm}{7} = 12 cm$

Wir kennen: $n = 7$ und $a = 12 cm$. Diese müssen wir nun einfach in die anderen beiden Formeln einsetzen.

Flächeninhalt:

$A = \frac{n \cdot a^2}{4 \cdot tan ( \frac{180^\circ}{n})} = \frac{7 \cdot (12 cm)^2}{4 \cdot tan ( \frac{180^\circ}{7 }) } = \frac {1008 cm^2}{1,93} = 522,25 cm^2$

Innenwinkel:

$\alpha = \frac {n-2}{n} \cdot 180^\circ = \frac {7-2}{7} \cdot 180^\circ \approx 128,57 ^\circ $

Erklärung der Formeln

Schauen wir uns hier die Herleitungen für die Formeln vom Umfang und von den Innenwinkeln an:

Umfang

Die Herleitung für den Umfang ist ganz einfach. Denn es müssen einfach die Längen der Seiten zusammengerechnet werden. Demnach ist der Umfang gleich der Anzahl der Seiten mal der Seitenlänge $\rightarrow U = n \cdot a$.

Innenwinkel

Wie kann der Innenwinkel berechnet werden? Starten wir mit dem einfachsten Vieleck, einem Dreieck.

dreieck1
Abbildung: gleichseitiges Dreieck mit Innenwinkeln

Wir wissen, dass die Innenwinkelsumme, das heißt die Summe aller Winkel zwischen den Seiten, $180 ^\circ$ groß ist. Da ein gleichseitiges Dreieck drei gleich große Winkel hat, muss diese Zahl nun durch drei geteilt werden. $\rightarrow \frac{180^\circ}{3}= 60 ^\circ $

Der Winkel zwischen den Seiten beträgt jeweils $60°$.

Die Größe der Innenwinkelsumme eines beliebigen Vielecks (also auch in nicht regelmäßigen Vielecken) berechnet man mit der Formel:

Innenwinkelsumme $= (n-2) \cdot 180^\circ $

Dabei ist $n$ die Anzahl der Ecken.

Beispiel

Innenwinkelsumme

Viereck:
Innenwinkelsumme $= (n-2) \cdot 180^\circ$ = $(4-2) \cdot 180^\circ$ = $2 \cdot 180 ^\circ$ = $360 ^\circ$

Siebeneck:
Innenwinkelsumme $= (n-2) \cdot 180^\circ$= $(7-2) \cdot 180^\circ$ = $5 \cdot 180 ^\circ$ = $900^\circ$

Die Innenwinkelsumme muss nun immer durch die Anzahl der Ecken geteilt:

Innenwinkel = Innenwinkelsumme / Anzahl der Ecken

Innenwinkel $= \frac {(n-2) \cdot 180 ^\circ}{n}$

Damit haben wir die Formeln für die Innenwinkelsumme hergeleitet.

Mit den Übungsaufgaben kannst du dich prüfen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Berechne den Flächeninhalt und den Umfang des Vielecks. Die Seitenlänge beträgt $2 cm$.

Viereck

Teste dein Wissen!

Mit welcher Formel berechnet man den Umfang eines Vielecks?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Innenwinkelsumme, den Innenwinkel und den Umfang eines regelmäßigen Sechsecks mit der Seitenlänge $5 m$!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie berechnet man die Innenwinkelsumme eines beliebigen Vielecks?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7814