Online Lernen | Mathematik Aufgaben | Geometrie Berechnungen am Dreieck Dreiecksarten - Namen und Eigenschaften

Dreiecksarten - Namen und Eigenschaften

Die geometrische Figur des Dreiecks ist sehr vielseitig. Im folgenden Lerntext erhältst du eine Übersicht über die verschiedenen Dreiecksklassifizierungen und -arten.

Wie sieht ein Dreieck aus?

Ein Dreieck besitzt drei Ecken, die mit Großbuchstaben (entgegen dem Uhrzeigersinn) benannt werden. Die Seiten eines Dreiecks werden in Kleinbuchstaben an die entsprechenden Seiten gegenüber der Punkte geschrieben. Außerdem besitzen Dreiecke drei sogenannte Innenwinkel, die mit den griechischen Buchstaben $\alpha$ (Alpha), $\beta$ (Beta) und $\gamma$ (Gamma), entsprechend des Punktes, aus dem sie entspringen, bezeichnet werden. Nach dem sogenannten Innenwinkelsatz ergeben alle Winkel eines Dreiecks zusammen $180°$.

allgemeine Darstellung eines Dreiecks
allgemeine Darstellung eines Dreiecks

In manchen Mathematikbüchern findest du auch folgende Definition: Ein Dreieck ist ein Streckenzug aus drei Strecken.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Innenwinkelsatz: $\alpha + \beta + \gamma = 180°$

Dreiecke können nach den Größen der Seiten oder der Winkel klassifiziert werden.

Klassifizierung nach Größe der Seitenlängen

Ungleichseitige Dreiecke sind Dreiecke, deren drei Seiten alle unterschiedlich lang sind.

Merke

Merke

Hier klicken zum Ausklappen

Für ein ungleichseitiges Dreieck gilt: $a~\neq~b~\neq~c$

Beispiel für ein ungleichseitiges Dreieck
Beispiel für ein ungleichseitiges Dreieck

Dreiecke werden als gleichschenklig bezeichnet, wenn zwei der drei Seiten gleich lang sind. Die gleich langen Seiten bezeichnet man als Schenkel, die dritte Seite als Grundseite oder Basis.

Merke

Merke

Hier klicken zum Ausklappen

Für gleichschenklige Dreiecke gilt: $a~=~b~\neq~c$

Beispiel für ein gleichschenkliges Dreieck
Beispiel für ein gleichschenkliges Dreieck

Dreiecke können auch drei gleich lange Seiten besitzen. Man bezeichnet dieses Dreieck dann als gleichseitig. In einem gleichseitigen Dreieck beträgt die Größe jedes Innenwinkels $60°$.

Merke

Merke

Hier klicken zum Ausklappen

Für gleichseitige Dreiecke gilt: $a~=~b~=~c$

Beispiel für ein gleichseitiges Dreieck
Beispiel für ein gleichseitiges Dreieck

Klassifizierung nach Größe der Winkel

Dreiecke werden als spitzwinklige Dreiecke bezeichnet, wenn sie ausschließlich Winkel unter $90°$ besitzen. Die Seiten können, müssen aber nicht, gleich lang sein.

Merke

Merke

Hier klicken zum Ausklappen

Für spitzwinklige Dreiecke gilt: $\alpha < 90°$, $\beta < 90°$, $\gamma < 90°$

Beispiel für ein spitzwinkliges Dreieck
Beispiel für ein spitzwinkliges Dreieck

Eine sehr wichtige Dreiecksart ist das rechtwinklige Dreieck. Ein rechtwinkliges Dreieck besitzt einen rechten Winkel. Die Seiten, die die Schenkel des rechten Winkels bilden, nennt man Katheten. Die Seite, die dem rechten Winkel gegenüber liegt, bezeichnet man als Hypotenuse. Die beiden anderen Winkel müssen nach dem Innenwinkelsatz spitze Winkel sein, also unter $90°$. Das rechtwinklige Dreieck wird dir noch oft begegnen zum Beispiel beim Satz des Pythagoras, dem Satz des Thales sowie dem Höhen- und Kathetensatz.

Merke

Merke

Hier klicken zum Ausklappen

Für rechtwinklige Dreiecke gilt: $\alpha$ oder $\beta$ oder $\gamma = 90°$

Beispiel für ein rechtwinkliges Dreieck
Beispiel für ein rechtwinkliges Dreieck

Stumpfwinklige Dreiecke besitzen einen stumpfen Winkel, das heißt einen Winkel zwischen $90°$ und $180°$. Die Seite gegenüber dem stumpfen Winkel ist die längste Seite des Dreiecks.

Merke

Merke

Hier klicken zum Ausklappen

Für stumpfwinklige Dreiecke gilt: $\alpha$ oder $\beta$ oder $\gamma = 90°$ bis $180°$

Beispiel für ein stumpfwinkliges Dreieck
Beispiel für ein stumpfwinkliges Dreieck

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7787