Suche
Kontakt

Dreiecksarten - Namen und Eigenschaften

Mathematik > Geometrie
Dreiecksarten - Namen und Eigenschaften! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Die geometrische Figur des Dreiecks ist sehr vielseitig. Im folgenden Lerntext erhältst du eine Übersicht über die verschiedenen Dreiecksklassifizierungen und -arten.

Wie sieht ein Dreieck aus?

Ein Dreieck besitzt drei Ecken, die mit Großbuchstaben (entgegen dem Uhrzeigersinn) benannt werden. Die Seiten eines Dreiecks werden in Kleinbuchstaben an die entsprechenden Seiten gegenüber der Punkte geschrieben. Außerdem besitzen Dreiecke drei sogenannte Innenwinkel, die mit den griechischen Buchstaben $\alpha$ (Alpha), $\beta$ (Beta) und $\gamma$ (Gamma), entsprechend des Punktes, aus dem sie entspringen, bezeichnet werden. Nach dem sogenannten Innenwinkelsatz ergeben alle Winkel eines Dreiecks zusammen $180°$.

allgemeine Darstellung eines Dreiecks
allgemeine Darstellung eines Dreiecks

In manchen Mathematikbüchern findest du auch folgende Definition: Ein Dreieck ist ein Streckenzug aus drei Strecken.

Gut zu wissen

Innenwinkelsatz: $\alpha + \beta + \gamma = 180°$

Dreiecke können nach den Größen der Seiten oder der Winkel klassifiziert werden.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Klassifizierung nach Größe der Seitenlängen

Ungleichseitige Dreiecke sind Dreiecke, deren drei Seiten alle unterschiedlich lang sind.

Merke

Für ein ungleichseitiges Dreieck gilt: $a~\neq~b~\neq~c$

Beispiel für ein ungleichseitiges Dreieck
Beispiel für ein ungleichseitiges Dreieck

Dreiecke werden als gleichschenklig bezeichnet, wenn zwei der drei Seiten gleich lang sind. Die gleich langen Seiten bezeichnet man als Schenkel, die dritte Seite als Grundseite oder Basis.

Merke

Für gleichschenklige Dreiecke gilt: $a~=~b~\neq~c$

Beispiel für ein gleichschenkliges Dreieck
Beispiel für ein gleichschenkliges Dreieck

Dreiecke können auch drei gleich lange Seiten besitzen. Man bezeichnet dieses Dreieck dann als gleichseitig. In einem gleichseitigen Dreieck beträgt die Größe jedes Innenwinkels $60°$.

Merke

Für gleichseitige Dreiecke gilt: $a~=~b~=~c$

Beispiel für ein gleichseitiges Dreieck
Beispiel für ein gleichseitiges Dreieck

Klassifizierung nach Größe der Winkel

Dreiecke werden als spitzwinklige Dreiecke bezeichnet, wenn sie ausschließlich Winkel unter $90°$ besitzen. Die Seiten können, müssen aber nicht, gleich lang sein.

Merke

Für spitzwinklige Dreiecke gilt: $\alpha < 90°$, $\beta < 90°$, $\gamma < 90°$

Beispiel für ein spitzwinkliges Dreieck
Beispiel für ein spitzwinkliges Dreieck

Eine sehr wichtige Dreiecksart ist das rechtwinklige Dreieck. Ein rechtwinkliges Dreieck besitzt einen rechten Winkel. Die Seiten, die die Schenkel des rechten Winkels bilden, nennt man Katheten. Die Seite, die dem rechten Winkel gegenüber liegt, bezeichnet man als Hypotenuse. Die beiden anderen Winkel müssen nach dem Innenwinkelsatz spitze Winkel sein, also unter $90°$. Das rechtwinklige Dreieck wird dir noch oft begegnen zum Beispiel beim Satz des Pythagoras, dem Satz des Thales sowie dem Höhen- und Kathetensatz.

Merke

Für rechtwinklige Dreiecke gilt: $\alpha$ oder $\beta$ oder $\gamma = 90°$

Beispiel für ein rechtwinkliges Dreieck
Beispiel für ein rechtwinkliges Dreieck

Stumpfwinklige Dreiecke besitzen einen stumpfen Winkel, das heißt einen Winkel zwischen $90°$ und $180°$. Die Seite gegenüber dem stumpfen Winkel ist die längste Seite des Dreiecks.

Merke

Für stumpfwinklige Dreiecke gilt: $\alpha$ oder $\beta$ oder $\gamma = 90°$ bis $180°$

Beispiel für ein stumpfwinkliges Dreieck
Beispiel für ein stumpfwinkliges Dreieck

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie nennt man ein Dreieck, dessen Seitenlängen in folgendem Verhältnis stehen?

$a~=~b~=~c$

Teste dein Wissen!

Für welche Dreiecksart gilt Folgendes:

$\alpha < 90°$, 
$\beta < 90°$, 
$\gamma < 90°$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wann ist ein Dreieck gleichschenklig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lautet der Innenwinkelsatz?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.
13.03.2025 , von Heike F.
Wir sind in Rheinbach super beraten worden und mein Sohn hat einen unfassbar vielseitigen und professionellen Nachhilfelehrer. Vielen Dank für alles!!!!
13.03.2025 , von Edith O.
Sehr flexibel, gehen auf die Kinder super ein. Immer wieder gerne.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7787