Online Lernen | Mathematik Aufgaben | Geometrie Berechnungen am Dreieck Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt

Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt

Neben dem Umkreis und dem Inkreis existiert noch ein weiterer besonderer Kreis, der bei Dreiecken wichtig ist - der Ankreis. Jedes Dreieck besitzt drei Ankreise. Ein Ankreis berührt jeweils eine Dreiecksseite von außen und die Verlängerungen der beiden anderen Seiten. Schauen wir uns nun Schritt für Schritt an, wie wir die drei Ankreise eines Dreiecks konstruieren können.

1. Schritt: Dreiecksseiten verlängern

Um einen Ankreis zu konstruieren, müssen wir zunächst die drei Seiten des Dreiecks in beide Richtungen verlängern,

Dreieck mit verlängerten Seiten
Dreieck mit verlängerten Seiten

2. Schritt: Mittelpunkt einzeichnen

Als nächstes müssen wir den Mittelpunkt des Ankreises einzeichnen. Dazu konstruieren wir zunächst die Winkelhalbierende zwischen der Seite, die der Ankreis berühren soll und den verlängerten Seiten. In unserem Beispiel beginnen wir mit dem Ankreis an der Seite $a$. Somit benötigen wir die Winkelhalbierenden der Verlängerungen der Seiten $b$ und $c$ und der Seite $a$.

Dreieck mit Winkelhalbierenden
Dreieck mit Winkelhalbierenden

Außerdem müssen wir nun noch die Winkelhalbierende im gegenüberliegenden Punkt einzeichnen. In unserem Fall also am Punkt $A$. Der Schnittpunkt aller drei Winkelhalbierenden ist der Mittelpunkt des Ankreises.

Mittelpunkt M des Ankreises an der Seite a
Mittelpunkt M des Ankreises an der Seite a

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Theoretisch würde es genügen, die ersten beiden Winkelhalbierenden einzuzeichnen. Schon der Schnittpunkt dieser beiden Halbgeraden entspricht dem Mittelpunkt. Allerdings empfiehlt es sich, die dritte Winkelhalbierende ebenfalls zu zeichnen, um zu überprüfen, ob man zuvor richtig gearbeitet hat.

3. Schritt: Radius bestimmen und Ankreis zeichnen

Um den Ankreis zeichnen zu können, benötigen wir nun noch den Radius. Dazu setzen wir den Zirkel so an, dass er die Seite $a$ berührt (tangiert).

Ankreis an der Seite a
Ankreis an der Seite a

Auf dieselbe Art und Weise konstruieren wir nun noch die Ankreise für die Seiten $b$ und $c$. In der folgenden Abbildung siehst du alle drei Ankreise. Der Ankreis an der Seite $c$ ist sehr groß, weshalb er nicht ganz dargestellt wird.

Ankreise des Dreiecks
Ankreise des Dreiecks

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise beim Konstruieren eines Ankreises

1. Dreiecksseiten verlängern

2. Mittelpunkt einzeichnen

3. Radius bestimmen und Ankreis zeichnen

Diese Schritte musst du für jede Dreiecksseite wiederholen. Am Ende musst du für jedes Dreieck drei Ankreise eingezeichnet haben.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7785