Satz des Pythagoras - Formel, Berechnung und Beispiele

Mathematik > Geometrie
Was ist der Satz des Pythagoras? - Formel und Beweis! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Satz des Pythagoras: Formel
Satz des Pythagoras: Beweis
Rechnen mit dem Satz des Pythagoras

Der Satz des Pythagoras ist eine der bekanntesten Formeln in der Mathematik. Er beschreibt den Zusammenhang zwischen den Seiten eines rechtwinkligen Dreiecks. Besonders wichtig sind dabei die Begriffe Kathete und Hypotenuse.

Der Satz des Pythagoras, oder auch die Pythagoras-Formel genannt, kommt aus dem Bereich der Geometrie und kann ausschließlich in rechtwinkligen Dreiecken angewendet werden.

In diesem Beitrag und Erklärvideo tauchen wir ein in eine der bekanntesten Formeln der Mathematik.

Vertiefung

Grundlage der Geometrie zum Satz des Pythagoras: Überlege, was du bis jetzt alles über Dreiecke weißt.

Wir haben schon verschiedene Arten dieser geometrischen Figur kennengelernt: gleichseitig, ungleichseitig und gleichschenklig. Die Bezeichnung rechtwinkliges Dreieck ist uns neu und beschreibt ein Dreieck mit einem rechten Winkel, das heißt, ein Dreieck, bei dem einer der drei Winkel 90° beträgt. In einem solchen Dreieck wird die Ecke mit dem rechten Winkel mit dem Punkt $C$ bezeichnet, die anderen Punkte entsprechend mit $A$ und $B$.

Rechtwinkliges Dreieck.
Rechtwinkliges Dreieck

Wie du ja bereits weißt, werden die Winkel mit dem gleichen Buchstaben benannt wie der Punkt, aus dem sie "entspringen". Die Winkel werden jedoch mit griechischen Buchstaben bezeichnet, damit du nichts verwechseln kannst. Der rechte Winkel ist definitionsgemäß am Punkt $C$ und heißt gamma ($\gamma$). Du hast auch schon einmal gesehen, dass wir die einzelnen Seiten eines Dreiecks mit den kleinen Buchstaben $a$, $b$ und $c$ benennen. Wichtig ist dabei, dass die Seiten nach den gegenüberliegenden Punkten benannt werden. Schaust du dir beispielsweise den Punkt $B$ an, wirst du feststellen, dass keine der Seiten, die von Punkt $B$ ausgehen, mit $b$ benannt sind, sondern diejenige Seite, die dem Punkt gegenüber liegt.

Rechtwinkliges Dreieck.
Rechtwinkliges Dreieck.

Bei den Seiten eines rechtwinkligen Dreiecks gibt es noch etwas zu beachten. Die Seitenlänge $c$, also die Seitenlänge, die dem rechten Winkel gegenüber liegt, bezeichnet man als Hypotenuse. Die anderen beiden Seiten ($a$,$b$), also die Seiten, die den rechten Winkel einschließen, nennt man Katheten.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Satz des Pythagoras: Formel und Berechnung

Wie du siehst, gibt es in einem rechtwinkligen Dreieck viel zu benennen. Schauen wir uns nun an, was der Satz des Pythagoras aussagt und wie wir damit rechnen:

Merke

Satz des Pythagoras: $\textcolor{red}{a^2} + \textcolor{red}{b^2} = \textcolor{blue}{c^2}$

ausgesprochen: Die Summe der Flächeninhalte der beiden Kathetenquadrate entspricht dem Flächeninhalt des Hypotenusenquadrats.

Was genau bedeutet das? Wir stellen uns vor, dass wir aus den drei Seitenlängen (bestehend aus den beiden Katheten und der Hypotenuse) je ein Quadrat konstruieren. Diese Quadrate bestehen also jeweils aus vier gleich langen Seiten mit den Seitenlängen $a$ oder $b$ oder $c$.

Dreieck mit konstruierten Flächen.
Dreieck mit konstruierten Flächen

Addierst du die Flächeninhalte der Quadrate mit den Seitenlängen $a$ und $b$, erhältst du den Flächeninhalt des Quadrates mit der Seitenlänge $c$, also $c^2$.

Gut zu wissen

Über die Person des Pythagoras ist sehr wenig bekannt. Niemand weiß, ob er den nach ihm benannten Satz überhaupt selbst formuliert hat. Die Formel taucht zum ersten Mal im Lehrbuch des Mathematikers Euklid (340 - 270 v. Chr.) auf.

Satz des Pythagoras: Beweis

Du glaubst nicht, dass die beiden kleineren Quadrate in das große Quadrat passen? Dann probiere es selbst aus!

Methode

Interaktives Arbeitsblatt

Ziehe die Flächen des großen Quadrates in die kleinen hinein, indem du mit der Maus auf die roten Punkte klickst, gedrückt hältst und bewegst. Du kannst außerdem die Lage des Punktes C verändern, was zeigt, dass der Satz des Pythagoras wirklich in allen rechtwinkligen Dreiecken gilt!

Bitte Box anklicken, um GeoGebra zu laden.

Den Satz des Pythagoras mathematisch zu beweisen ist auf viele Wege möglich. Besonders anschaulich und gleichzeitig relativ einfach ist der geometrische Beweis.

In dem folgenden Quadrat findest du insgesamt vier gleiche, rechtwinklige Dreiecke an den Ecken. Die Hypotenuse $c$ bildet dabei ein zweites Quadrat ($c^2$). Eine Seite des großen Quadrates ist so lang wie die Summe aus der Seite $a$ und der Seite $b$.

Geometrischer Beweis des Satz des Pythagoras.
Geometrischer Beweis des Satz des Pythagoras

Der Flächeninhalt des großen Quadrats ergibt sich daher wie folgt:

$A = (a + b)^2$

Dieser Flächeninhalt lässt sich aber auch durch den Flächeninhalt der vier kleinen Dreiecke und des kleineren Quadrats ($c^2$) ausdrücken. Wir zerlegen das große Quadrat also in $c^2$ und die vier Dreiecke mit den Seiten $a, b$ und $c$.

Der Flächeninhalt von einem rechtwinkligen Dreieck ist gegeben durch: $A= \frac{1}{2} \cdot (a \cdot b)$. Da es vier Dreiecke sind, müssen wir das natürlich direkt vier Mal machen:

$(a + b)^2 = c^2 + 4 \cdot (\frac{1}{2} \cdot (a \cdot b))$

Die Klammern des rechten Terms lassen sich auflösen:

$(a + b)^2 = c^2 + 2 \cdot a \cdot b$

Die Klammer im linken Term können wir mit Hilfe der 1. binomischen Formel auflösen:

$ a^2 + 2 \cdot a \cdot b + b^2 = c^2 + 2 \cdot a  \cdot b$

Auf beiden Seiten steht $2\cdot a\cdot b$, was wir daher wegstreichen können. Wir erhalten dann den Satz des Pythagoras:

$a^2 +  b^2 = c^2 $

Rechnen mit dem Satz des Pythagoras

Das Besondere am Satz des Pythagoras ist, dass wir alle drei Seitenlängen in ein Verhältnis setzen können. Das bedeutet, dass uns immer zwei Seitenlängen ausreichen, um die dritte Seitenlänge zu berechnen. Mithilfe des Satz des Pythagoras kannst du also nicht nur die Länge der Seite $c$, sondern auch die Längen der Seiten $a$ oder $b$ berechnen:

Beispiel

Wie lang ist $a$?

$a^2 + b^2 = c^2$    | $-b^2$

$a^2 = c^2 - b^2$     |$\sqrt[]{}$

$a = \sqrt[]{c^2 - b^2}$

Beispiel

Wie lang ist $b$?

$a^2 + b^2 = c^2$    | $-a^2$

$b^2 = c^2 - a^2$     |$\sqrt[]{}$

$b = \sqrt[]{c^2 - a^2}$

Beispiel

Wie lang ist $c$?

$c^2 = a^2 + b^2 $   |$\sqrt[]{}$

$c = \sqrt[]{a^2 + b^2}$

Nun hast du alles Wichtige in der Mathematik zum Satz des Pythagoras gelernt. Teste nun dein neu erlerntes Wissen und rechne selbst in den Übungsaufgaben. Dabei wünschen wir dir viel Spaß und Erfolg.

Beispielaufgabe: Rechnen mit dem Satz des Pythagoras

Der Satz des Pythagoras ist nicht nur in Dreiecken hilfreich. Wir werden jetzt sehen, dass wir die eben gelernte Formel auch bei Vierecken anwenden können. Schauen wir uns gemeinsam folgendes Problem an. Wir haben ein Viereck mit einer unbekannten Seitenlänge $b$.

Viereck mit zwei rechten Winkeln.
Viereck mit zwei rechten Winkeln.

Wie du in der Abbildung erkennen kannst, lässt sich das gegebene Viereck in zwei rechtwinklige Dreiecke zerschneiden. Wie schon bei den Dreiecks-Aufgaben fehlt eine Seitenlänge des Vierecks. Die Seiten $a$, $c$ und $d$ sind gegeben. Um also $b$ zu berechnen reicht uns eigentlich das rechte Dreieck $BCD$. Allerdings fehlen uns in diesem Dreieck zwei Seitenlängen, nämlich die unbekannte Länge $b$ und die Länge der gezogen Trennlinie ($h$). Der Satz des Pythagoras bringt uns an dieser Stelle nicht weiter. Unsere einzige Möglichkeit ist zunächst das linke Dreieck zu betrachten. Auch hier ist die Länge der Trennlinie unbekannt. Im Gegensatz zur rechten Hälfte sind uns aber die beiden anderen Seitenlängen bekannt, sodass wir die Länge der Trennlinie ($h$) berechnen können.

Zerschnittenes Viereck.
zerschnittenes Viereck

Lösungsweg

Berechnen wir also zunächst die Länge von $h$ im Dreieck $ABD$. Dieses Beispiel ist besonders einfach, da die gesuchte Länge die Hypotenuse ist, also dem rechten Winkel gegenüber liegt. Wir müssen den Satz des Pythagoras also gar nicht umstellen, sondern rechnen direkt mit den Quadraten der Katheten $a$ und $d$.

$a^2 + d^2 = h^2$

$(12 cm)^2 + (9 cm)^2 = h^2$

$225 cm^2 = h^2$    | $\sqrt[]{}$

$\sqrt[]{225cm^2} = h$

$h = 15 cm$

Wir kennen jetzt die Länge der Trennlinie $h$ und haben im rechten Dreieck $BCD$ nur noch eine unbekannte Seite. In diesem Fall ist die unbekannte Seitenlänge $b$ jedoch eine der Katheten, sodass wir den Satz des Pythagoras zunächst umformen müssen:

$b^2 + c^2 = h^2$    | $-c^2$

$b^2 = h^2 - c^2$     |$\sqrt[]{}$

$b = \sqrt[]{(15 cm)^2 - (5 cm)^2}$

$b \approx 14,14 cm$

Der Satz des Pythagoras kann also auch bei Vielecken (mehreckigen Figuren) angewendet werden. Das Prinzip ist dabei immer dasselbe: Wir zerlegen die Figur in möglichst wenige, rechtwinklige Dreiecke und rechnen dann nacheinander alle unbekannten Größen aus.

Merke zur Anwendung des Satz des Pythagoras

Der Satz des Pythagoras kann also auch bei Vielecken (mehreckigen Figuren) angewendet werden. Das Prinzip ist dabei immer dasselbe: Wir zerlegen die Figur in möglichst wenige, rechtwinklige Dreiecke und rechnen dann nacheinander alle unbekannten Größen aus.

In den Übungsaufgaben kannst du jetzt dein neues Wissen testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie viele rechtwinklige Dreiecke findest du in diesem Trapez?
(Gefundene Dreiecke dürfen nicht in noch weitere Dreiecke zerlegt werden.)

image

Teste dein Wissen!

Wie viele Größen dürfen unbekannt sein, um den Satz des Pythagoras anwenden zu können?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In welche Teilfiguren sollte man größere geometrische Figuren zerlegen, um den Satz des Pythagoras anwenden zu können?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wann musst du die Formel des Satzes des Pythagoras umstellen?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8586