Mathematik > Geometrie

Höhensatz des Euklid verstehen und beweisen

Inhaltsverzeichnis:

Der Höhensatz des Euklid gehört zur Satzgruppe des Pythagoras. Wie der Kathetensatz und der Satz des Pythagoras, befasst sich der Höhensatz mit Berechnungen in rechtwinkligen Dreiecken.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Die längste Seite eines rechtwinkligen Dreiecks heißt Hypotenuse. Die beiden kürzeren Seiten nennt man Katheten.

Was sagt der Höhensatz aus?

Wie der Name bereits vermuten lässt, benötigen wir die Höhe eines Dreiecks, um den Höhensatz anwenden zu können. Die Höhe eines rechtwinkligen Dreiecks ist ein Lot, das vom Scheitelpunkt des rechten Winkels auf die gegenüberliegende Seite gefällt wird. Die Höhe teilt die Hypotenuse ($c$) in zwei Abschnitte $q$ und $p$.

Dreieck mit Höhe und Hypotenusenabschnitten q und p
Dreieck mit Höhe und Hypotenusenabschnitten q und p

Der Höhensatz bringt die Strecken $q$, $p$ und $h$ in ein Verhältnis. Er besagt, dass das Quadrat der Höhe genauso groß ist wie ein Rechteck mit den Seitenlängen $q$ und $p$.

Höhensatz
Höhensatz

Merke

Merke

Hier klicken zum Ausklappen

Höhensatz

$h^2 = q \cdot p$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beweis des Höhensatzes

Um den Höhensatz zu beweisen, benötigen wir den Satz des Pythagoras sowie die erste binomische Formel.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Satz des Pythagoras: $a^2 + b^2 = c^2$

1. Binomische Formel: $ (a + b)^2 = a^2 + 2\cdot a \cdot b+ b^2$

Ein rechtwinkliges Dreieck wird durch das Einzeichnen der Höhe in zwei kleinere, rechtwinklige Dreiecke unterteilt. Insgesamt können wir also drei rechtwinklige Dreiecke erkennen: Ein Dreieck mit den Seitenlängen $a, b, c$, ein Dreieck mit den Seitenlängen $h, p, a$ und ein Dreieck mit den Seitenlängen $h, b, q$.

Dreieck mit Höhe
Rechtwinkliges Dreieck mit Höhe

Jedes dieser Dreiecke ist rechtwinklig und daher können wir jeweils den Satz des Pythagoras anwenden:

1. $\textcolor{blue}{a^2} + \textcolor{red}{b^2} = \textcolor{green}{c^2}$

2. $h^2 + p^2 = \textcolor{blue}{a^2}$

3. $h^2 + q^2 = \textcolor{red}{b^2}$

Außerdem können wir eine weitere Beziehung aufstellen:

  • $q + p = c$

Dies lässt sich auch als Quadrat schreiben:

  • $(q + p)^2 = c^2$

Mithilfe der ersten binomischen Formel können wir den Klammerterm $(q + p)^2$ auflösen.

$(q + p)^2 = c^2~~~~~|$1. bin. Formel

$q^2 + 2\cdot q \cdot p + p^2 = \textcolor{green}{c^2}$

Diesen neu hergeleiteten Ausdruck für $\textcolor{green}{c^2}$ können wir nun in die 1. Gleichung einsetzen.

$\textcolor{blue}{a^2} + \textcolor{red}{b^2} = \textcolor{green}{c^2}$

$\textcolor{blue}{a^2} + \textcolor{red}{b^2} = q^2 + 2\cdot q \cdot p + p^2$

Außerdem können wir $\textcolor{blue}{a^2}$ und $\textcolor{red}{b^2}$ jeweils durch den linken Term der 2. und 3. Gleichung ersetzen.

$\textcolor{blue}{a^2} + \textcolor{red}{b^2} = q^2 + 2\cdot q \cdot p + p^2~~~~~|h^2 + p^2 = \textcolor{blue}{a^2}$

$h^2 + p^2 + \textcolor{red}{b^2} = q^2 + 2\cdot q \cdot p + p^2~~~~~|h^2 + q^2 = \textcolor{red}{b^2}$

$h^2 + p^2 + h^2 + q^2 = q^2 + 2\cdot q \cdot p + p^2$

Diese neu aufgestellte Gleichung vereinfachen wir nun so weit wie möglich.

$2 \cdot h^2 + p^2 + q^2 = q^2 + 2\cdot q \cdot p + p^2~~~~~|-p^2$

$2 \cdot h^2 + q^2 = q^2 + 2 \cdot q \cdot p~~~~|-q^2$

$2 \cdot h^2 = 2 \cdot q \cdot p~~~~|:2$

$h^2 = q \cdot p$

Nach dem Vereinfachen erhalten wir den Höhensatz des Euklid.

Beispielrechnung 

Schauen wir uns an einem Beispiel an, wie du den Höhensatz des Euklid anwenden kannst. 

In unserem Beispiel hast du die Höhe $h = 8 cm$ und $q =2 cm$ gegeben. Nun kannst du den Höhensatz $h^2 = p \cdot q$ verwenden, um den fehlenden Wert für $p$ zu berechnen. Dafür setzt du zunächst die gegebenen Werte $h$ und $q$ in die Gleichung des Höhensatzes ein und erhältst: $8^2 = p \cdot 2$.

Im nächsten Schritt löst du die Gleichung mittels Termumformung nach $p$ auf und es ergibt sich folgende Gleichung: $8^2:2=p$. Wenn wir diesen Term nun vereinfachen, ergibt sich $64:2=p$ und das ist 32. Das bedeutet, dass $q$ eine Länge von $32 cm$ hat. 

Um nun noch einmal zu prüfen, ob deine Rechnung stimmt, setzt du $h$, $p$ und $q$ in den Höhensatz ein:

$(8cm)^2=2cm\cdot 32cm$

$64 cm=64 cm$

Da bei deinem Ergebnis auf beiden Seiten der Gleichung ein identisches Ergebnis herauskommt, ist deine Berechnung des Abschnitts $p$ richtig gewesen.

Nun hast du einen detaillierten Überblick über die Herleitung und Anwendungsmöglichkeiten des Höhensatz des Euklid bekommen. Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie lautet der Höhensatz des Euklid?

Teste dein Wissen!

Die Höhe eines rechtwinkligen Dreiecks beträgt 12 cm. Die Länge des Hypotenusenabschnittes p beträgt 3 cm, also p = 3 cm. Wie lang ist die Strecke $q$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In wie viele Abschnitte unterteilt die Höhe eines rechtwinkligen Dreiecks die Hypotenuse?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Die Höhe eines rechtwinkligen Dreiecks beträgt 9 cm. Der Hypotenusenabschnitt $~q~$ hat eine Länge von 4 cm.

Wie lang ist die Hypotenuse $~c~$ ?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
anonymisiert, vom 2020-01-11
Sehr guter Service und sehr guter Lehrer
anonymisiert, vom 2020-01-10
Exzellente persönliche Betreuung. Es wird sich Zeit genommen für individuelle Probleme und diese werden kompetent gelöst. Das Lehrpersonal ist sehr erfahren und passt sich den jeweiligen Umständen sehr gut an. Ich kann den Studienkreis Wolfenbüttel uneingeschränkt weiterempfehlen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7836