Pyramidenstumpf: Volumen und Oberfläche berechnen
In diesem Lerntext erfährst du alles über den geometrischen Körper des quadratischen Pyramidenstumpfes.
Was ist ein Pyramidenstumpf?
Der Pyramidenstumpf leitet sich vom geometrischen Körper der (quadratischen) Pyramide ab. Die quadratische Pyramide besteht aus einer quadratischen Grundfläche und vier gleichschenkligen Dreiecken als Mantelfläche.
Ein quadratischer Pyramidenstumpf ist wie eine quadratische Pyramide, deren Spitze abgeschnitten wurde. Daraus ergeben sich einige Gemeinsamkeiten und einige Unterschiede im Vergleich zur Pyramide. So besitzt der Pyramidenstumpf eine quadratische Grundfläche $G$ sowie eine quadratische Schnittfläche $S$ und eine Mantelfläche, die aus vier identischen gleichschenkligen Trapezen besteht.

Wichtige Größen im quadratischen Pyramidenstumpf sind außerdem die Höhe $h$ des Stumpfes, die vom Mittelpunkt der Grundfläche zum Mittelpunkt der Schnittfläche geht und die Höhe $h_{m}$ der vier gleichschenkligen Trapeze, die auch als Höhe der Mantelfläche bezeichnet werden kann.
Grundfläche und Schnittfläche berechnen
Grund- und Schnittfläche besitzen eine einfache geometrische Form: sie sind quadratisch. Das bedeutet, sie besitzen jeweils vier gleich lange Seiten. Du musst nur darauf achten, dass du die Seitenlänge $a$ der Grundfläche $G$ und die Seitenlänge $b$ der Schnittfläche $S$ nicht verwechselst.
Merke
Merke
Grundfläche berechnen
$A_{G} = a^2$
Schnittfläche berechnen
$A_{S} = b^2$
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Mantelfläche berechnen
Die Mantelfläche besteht aus vier gleichschenkligen Trapezen. Ein Trapez ist ein Viereck mit zwei parallel verlaufenden Seiten, die unterschiedlich lang sind. Bei einem gleichschenkligen Trapez sind zudem die beiden Schenkel gleich lang.
Die Fläche eines Trapez berechnen wir mithilfe dieser Formel:
$A_{Trapez} = \frac{1}{2} \cdot (a + b) \cdot h$
Die Seiten $a$ und $b$ bilden die Unter- und Oberseite des Trapezes. Die Höhe des Trapez entspricht im Pyramidenstumpf der Höhe $h_{m}$ der Mantelfläche. Da die Mantelfläche aus insgesamt vier Trapezen besteht, müssen wir die Gleichung noch mit vier multiplizieren.
Merke
Merke
Berechnung der Mantelfläche
$A_{M} = 4\cdot \frac{1}{2} \cdot (a + b) \cdot h_{m} = 2 \cdot (a + b) \cdot h_{m}$
Oberfläche berechnen
Die Oberfläche des Pyramidenstumpfes setzt sich zusammen aus der Grundfläche, der Schnittfläche und der Mantelfläche.
Merke
Merke
Berechnung der Oberfläche
$O_{Pyramidenstumpf}~= ~A_{Grundfläche}~+~A_{Schnittfläche}~+~A_{Mantelfläche}$
$O_{Pyramidenstumpf}~= ~a^2 ~+~ b^2 ~+~ 2 \cdot (a + b) \cdot h_{m}$
Volumen berechnen
Die Formel zur Berechnung des Volumens eines quadratischen Pyramidenstumpfes ist ein wenig komplizierter.
Merke
Merke
Volumen berechnen
$V_{Pyramidenstumpf} = \frac{h}{3} \cdot (a^2 + a\cdot b + b^2)$
Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!
Teste dein Wissen!
Berechne die Oberfläche des quadratischen Pyramidenstumpfes mit folgenden Größen:
$a~=~10~cm$
$b~=~5~cm$
$h_m~=~7~cm$
Welche Form haben Grund- und Schnittfläche eines quadratischen Pyramidenstumpfes?
Berechne das Volumen eines quadratischen Pyramidenstumpfes mit folgenden Größen:
$a~=~6~cm$
$b~=~4~cm$
$h~=~5~cm$
Welche Form besitzt die Mantelfläche eines Pyramidenstumpfs?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema














Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen