Kathetensatz des Euklid - Was ist das?

Mathematik > Geometrie
Kathetensatz des Euklid - Was ist das? | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Der Kathetensatz des Euklid gehört zur Satzgruppe des Pythagoras. Wie der Höhensatz und der Satz des Pythagoras, befasst sich der Kathetensatz mit Berechnungen in rechtwinkligen Dreiecken.

Ausgangspunkt für den Kathetensatz ist der Satz des Pythagoras, laut dem das Hypotenusenquadrat ($c^2$) genauso groß ist wie die Summe der Kathetenquadrate ($a^2$ und $b^2$): $a^2 + b^2 = c^2$

Gut zu wissen

Die längste Seite eines rechtwinkligen Dreiecks heißt Hypotenuse. Die beiden kürzeren Seiten nennt man Katheten.

Satz des Pythagoras
Satz des Pythagoras

Was ist der Kathetensatz des Euklid?

Um zu verstehen, was der Kathetensatz aussagt, benötigen wir die Höhe des Dreiecks. Die Höhe eines rechtwinkligen Dreiecks ist ein Lot, das vom rechten Winkel auf die gegenüberliegende Seite gefällt wird. Die Höhe teilt die Hypotenuse ($c$) in zwei Abschnitte $q$ und $p$.

Kathetensatz des Euklid
Kathetensatz des Euklid

Zeichnen wir die Höhe über das Dreieck hinaus, teilt sie das Hypotenusenquadrat in zwei Rechtecke mit den Flächeninhalten $q\cdot c$ und $p\cdot c$.

Merke

Kathetensatz des Euklid

Das Quadrat von $a$ ist flächeninhaltsgleich zum Rechteck mit den Seiten $p$ und $c$. Das Quadrat von $b$ ist flächeninhaltsgleich zum Rechteck mit den Seiten $q$ und $c$.

  • $b^2 = q \cdot c$
  • $a^2 = p \cdot c$
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Beweis des Kathetensatzes

Durch das Einzeichnen der Höhe erhalten wir insgesamt drei Dreiecke: Ein Dreieck mit den Seitenlängen $a, b, c$, ein weiteres Dreieck mit den Seitenlängen $h, p, a$ und ein drittes Dreieck mit den Seitenlängen $h, b, q$.

Dreieck mit Höhe
Dreieck mit Höhe

Jedes dieser Dreiecke ist rechtwinklig und daher können wir jeweils den Satz des Pythagoras anwenden:

  • $a^2 + b^2 = c^2$
  • $h^2 + p^2 = a^2$
  • $h^2 + q^2 = b^2$

Außerdem können wir eine weitere Beziehung aufstellen:

  • $q + p = c$

Für den Beweis benötigt man außerdem den Höhensatz des Euklid:

  • $h^2 = p \cdot q$

Beweis: $b^2 = q \cdot  c$

Wir starten mit der Formel für $b^2$:

$b^2 = q^2 + h^2$

Im ersten Schritt ersetzen wir $h^2$ entsprechend dem Höhensatz durch $p \cdot q$.

$b^2 = q^2 + (p \cdot q)$

Die Potenz $q^2$ können wir ausschreiben und erhalten:

$b^2 = (q \cdot q) + (p\cdot q)~~~~~|q~ausklammern$

$b^2 = q \cdot (q + p)$

Für den Klammerterm $(q + p)$ können wir nach der obigen Formel auch $c$ einsetzen.

Gut zu wissen

$q + p = c$

So erhalten wir den uns bekannten Kathetensatz:

$b^2 = q \cdot c$

Beweis: $a^2 = p \cdot c$

Der Beweis ist analog zu der obigen Rechnung, mit dem Unterschied, dass wir mit der Formel für $a^2$ starten:

$a^2 = p^2 + h^2~~~~~|Höhensatz~anwenden:~h^2 = p \cdot q$

$a^2 = p^2 + (p\cdot q)$

$a^2 = (p \cdot p) + (p\cdot q)~~~~~|p~ausklammern$

$a^2 = p \cdot (p + q)~~~~~|c= p + q$

$a^2 = p \cdot c$

Beispielaufgabe

Bei einem rechtwinkligen Dreieck sind folgende Längen gegeben: $c =5~cm$ und $p = 2~cm$. Wir sollen die fehlenden Längen $a$ und $b$ berechnen.

Um die gesuchten Seiten mithilfe des Kathetensatzes berechnen zu können, müssen $p$, $q$ und $c$ bekannt sein:

  • $b^2 = q \cdot c$
  • $a^2 = p \cdot c$

Da $p$ und $c$ schon in der Aufgabenstellung gegeben sind, können wir $a$ direkt berechnen:

$a^2 = p \cdot c = 2~cm \cdot 5~cm = 10~cm^2~~~~~|\sqrt[]{}$

$a = \sqrt[]{10~cm^2}$

$a \approx 3,16~cm$

Nun fehlt uns noch die Seite $b$. Um diese Seitenlänge zu berechnen, benötigen wir die Seite $q$.

$c = p + q ~ \leftrightarrow ~ q = c - p ~ \leftrightarrow ~ q = 5~cm - 2~cm = 3~cm$

Jetzt kennen wir $q$ und können $b$ mithilfe des Kathetensatzes berechnen:

$b^2 = q \cdot c = 3~cm \cdot 5~cm = 15~cm^2~~~~~|\sqrt[]{}$

$b = \sqrt[]{15~cm^2}$

$b \approx 3,87~cm$

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Bei einem rechtwinkligen Dreieck sind folgende Längen gegeben:

$c = 12~cm$

$p= 2~cm$

Berechne die fehlenden Seitenlängen $a$ und $b$ mit dem Kathetensatz.

Teste dein Wissen!

Welche Formeln stellen den Kathetensatz des Euklid dar?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Der Kathetensatz befasst sich mit Berechnungen in...

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussagen sind korrekt?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7837