Online Lernen | Mathematik Aufgaben | Geometrie Geometrische Körper Was ist ein Prisma? - Volumen und Oberfläche berechnen

Was ist ein Prisma? - Volumen und Oberfläche berechnen

Habt ihr gerade in Mathe in Geometrie das Prisma als Thema? Lernt ihr gerade alles zum Thema Prisma? Hier lernst du alles Wichtige über den geometrischen Körper, das Prisma. Wir erklären dir, wie du zum Beispiel das Volumen berechnest, wie du bei der Oberflächenberechnung vorgehst und wenden dies direkt in Aufgaben mit echten Prismen an. 

Prisma - Formeln und Fakten

Wir haben dir hier schon mal das Wichtigste zum geometrischen Körper, dem Prisma aufgelistet:

Methode

Methode

Hier klicken zum Ausklappen
  1. Die Grundflächen von Prismen können unterschiedlich aussehen. Die Grundfläche kann zum Beispiel ein Dreieck ("dreieckiges Prisma") oder ein Sechseck ("sechseckiges Prisma") sein.
  2. Das Volumen eines Prismas berechnest du, indem du die Formel $V_{Prisma} = G ~ \cdot ~h$ anwendest. Die Formel der Grundfläche $G$ variiert je nach Form der Grundfläche.
  3. Die Oberfläche eines Prismas berechnest du, indem du die Formel $A_{Mantel} = U_{Grundfläche} \cdot h_{Prisma}$ anwendest. Hier variieren sowohl die Flächeninhaltsformel der Grundfläche als auch die der Mantelfläche.

Im Folgenden erklären wir dir diese Informationen nun detaillierter und geben dir Beispiele an die Hand.

Prisma: Definition

Im Gegensatz zur Kugel oder zum Zylinder ist ein Prisma in der Geometrie laut Definition kein eindeutig definierter Körper. Man kann ein Prisma vielmehr als eine Gruppe oder Art von geometrischen Körpern bezeichnen, dessen Grundfläche ein beliebiges Vieleck (z. B. Dreieck, Sechseck) ist. Alle Seitenkanten sind parallel zueinander und gleich lang. Die Grundfläche und die Deckfläche sind daher identisch.

Wie bei allen geometrischen Körpern können wir also auch bei einem Prisma Grund-, Deck- und Mantelfläche unterscheiden. Die folgende Abbildung zeigt zwei beispielhafte Prismen. Die Grundfläche bzw. Deckfläche des linken Prismas ist ein Dreieck. Die Mantelfläche besteht aus drei Rechtecken. Wenn man die Mantelfläche aufklappt, ergeben diese drei Rechtecke zusammen ein großes Rechteck. Die Grundfläche bzw. Deckfläche des rechten Prismas ist ein Sechseck. Der Mantel besteht aus sechs Rechtecken. Wenn man die Mantelfläche aufklappt, ergeben diese sechs Rechtecke zusammen auch wieder ein großes Rechteck. Die Mantelfläche eines Prismas ist also immer ein Rechteck, unabhängig von der Form der Grundfläche.

Beispiel zweier Prismen
Beispiel: dreieckiges Prisma und sechseckiges Prisma

Volumen berechnen: Prisma

Da ein Prisma, je nach Grundfläche, unterschiedliche Formen annehmen kann, können wir keine konkrete allgemeingültige Prisma-Formel zur Berechnung des Volumens angeben.

Dennoch können wir eine, wenn auch relativ allgemeine, Formel zur Berechnung des Volumens angeben. (Diese Prisma-Formel ähnelt den Formeln zur Berechnung des Volumens eines Quaders bzw. eines Würfels.)

Merke

Merke

Hier klicken zum Ausklappen

$V_{Prisma} = G  ~ \cdot ~h$

$G$ = Grundfläche

$h$ = Höhe des Prismas

Da die Form der Grundfläche variabel ist, können wir keine konkretere Formel aufstellen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Berechne das Volumen des beschriebenen Prismas:

Die Grundfläche des Prismas ist ein Dreieck. Die Grundseite des Dreiecks ($g_D$) beträgt $6~cm$ und die Höhe des Dreiecks ($h_D$) beträgt $4~cm$. Die Höhe des Prismas ($h_{Prisma}$) beträgt $12~cm$.

In unserem Beispiel ist die Grundseite ein Dreieck. Wir benötigen also zunächst den Flächeninhalt des Dreiecks. Die Formel dazu lautet:

$G_{Prisma}=A_{Dreieck} = \frac{1}{2} \cdot g_D \cdot h_D$

Da wir nun wissen, wie wir die Grundfläche des Prismas berechnen müssen, können wir die Formel für das Volumen des Prismas neu aufstellen:

$V_{Prisma} = G_{Prisma}  ~ \cdot ~h_{Prisma}$

$\leftrightarrow~~~V_{Prisma} = \frac{1}{2} \cdot g_D \cdot h_{D} \cdot h_{Prisma}$

Nun setzen wir die gegebenen Werte ein und erhalten:

$V_{Prisma} = \frac{1}{2} \cdot 6~cm~ \cdot 4~cm~ \cdot 12~cm~=~144~cm^3$

Oberfläche berechnen

Auch bei der Oberfläche, bzw. dem Oberflächeninhalt können wir nur eine ganz allgemeine Prisma-Formel aufstellen. So setzt sich die Oberfläche eines Prismas aus dem Flächeninhalt der Deck-, der Grund- und der Mantelfläche zusammen.

$O_{Prisma} = A_{Grundfläche} + A_{Deckfläche} + A_{Mantelfläche}$

Da Grund- und Deckfläche gleich groß sind, können wir die Formel vereinfachen:

Merke

Merke

Hier klicken zum Ausklappen

$O_{Prisma} = 2\cdot A_{Grundfläche} + A_{Mantelfläche}$

Je nachdem welche Form die Grundfläche des Prismas besitzt, musst du die richtige Prisma-Formel für das entsprechende Vieleck finden.

Die Mantelfläche eines Prismas ist immer ein Rechteck. Die beiden Seitenlängen dieses Rechtecks sind bekannt: Die eine Seitenlänge des Rechtecks entspricht dem Umfang der Grundfläche ($U_{Grundfläche}$) und die andere Seitenlänge entspricht der Höhe des Prismas ($h_{Prisma}$). Für die Berechnung der Mantelfläche können wir also eine Formel aufstellen:

Merke

Merke

Hier klicken zum Ausklappen

$A_{Mantel} = U_{Grundfläche} \cdot h_{Prisma}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

Berechne die Oberfläche des folgenden Prismas.

Wie groß ist die Oberfläche dieses Prismas?
Wie groß ist der Oberflächeninhalt dieses Prismas?

Die Grund- und Deckfläche des Prismas sind dreieckig. Der Flächeninhalt eines Dreiecks berechnet sich nach folgender Formel:

$A_{Dreieck} = \frac{1}{2} \cdot g_D \cdot h_D$

$g_D$ = Grundseite des Dreiecks

$h_D$ = Höhe des Dreiecks

Grundseite und Höhe des Dreiecks können wir aus der Zeichnung ablesen.

$A_{Grundfläche} = \frac{1}{2} \cdot 12~cm \cdot 5~cm = 30~cm^2$

Als nächstes berechnen wir die Mantelfläche:

$A_{Mantel} = U_{Grundfläche}\cdot h_{Prisma} = (9~cm + 12~cm + 6~cm) \cdot 20~cm = 540~cm^2$

Haben wir Grund- und Mantelfläche berechnet, müssen wir die Werte nur noch addieren und erhalten so die Oberfläche des Prismas:

$O_{Prisma} = 2\cdot A_{Grundfläche} + A_{Mantelfläche} = 2\cdot 30~cm^2 + 540~cm^2 = 600~cm^2$

Nun hast du alles Wichtige gelernt, was du an Prismen berechnen kannst. Teste dein neu erlerntes Wissen zu Prismen in unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8582