Mathematik > Geometrie

Was ist ein Prisma? - Volumen und Oberfläche berechnen

Inhaltsverzeichnis:

Habt ihr gerade in Mathe in Geometrie das Prisma als Thema? Lernt ihr gerade alles zum Thema Prisma? Hier lernst du alles Wichtige über den geometrischen Körper, das Prisma. Wir erklären dir, wie du zum Beispiel das Volumen berechnest, wie du bei der Oberflächenberechnung vorgehst und wenden dies direkt in Aufgaben mit echten Prismen an. 

Prisma - Formeln und Fakten

Wir haben dir hier schon mal das Wichtigste zum geometrischen Körper, dem Prisma aufgelistet:

Methode

Methode

Hier klicken zum Ausklappen
  1. Die Grundflächen von Prismen können unterschiedlich aussehen. Die Grundfläche kann zum Beispiel ein Dreieck ("dreieckiges Prisma") oder ein Sechseck ("sechseckiges Prisma") sein.
  2. Das Volumen eines Prismas berechnest du, indem du die Formel $V_{Prisma} = G ~ \cdot ~h$ anwendest. Die Formel der Grundfläche $G$ variiert je nach Form der Grundfläche.
  3. Die Oberfläche eines Prismas berechnest du, indem du die Formel $A_{Mantel} = U_{Grundfläche} \cdot h_{Prisma}$ anwendest. Hier variieren sowohl die Flächeninhaltsformel der Grundfläche als auch die der Mantelfläche.

Im Folgenden erklären wir dir diese Informationen nun detaillierter und geben dir Beispiele an die Hand.

Prisma: Definition

Im Gegensatz zur Kugel oder zum Zylinder ist ein Prisma in der Geometrie laut Definition kein eindeutig definierter Körper. Man kann ein Prisma vielmehr als eine Gruppe oder Art von geometrischen Körpern bezeichnen, dessen Grundfläche ein beliebiges Vieleck (z. B. Dreieck, Sechseck) ist. Alle Seitenkanten sind parallel zueinander und gleich lang. Die Grundfläche und die Deckfläche sind daher identisch.

Wie bei allen geometrischen Körpern können wir also auch bei einem Prisma Grund-, Deck- und Mantelfläche unterscheiden. Die folgende Abbildung zeigt zwei beispielhafte Prismen. Die Grundfläche bzw. Deckfläche des linken Prismas ist ein Dreieck. Die Mantelfläche besteht aus drei Rechtecken. Wenn man die Mantelfläche aufklappt, ergeben diese drei Rechtecke zusammen ein großes Rechteck. Die Grundfläche bzw. Deckfläche des rechten Prismas ist ein Sechseck. Der Mantel besteht aus sechs Rechtecken. Wenn man die Mantelfläche aufklappt, ergeben diese sechs Rechtecke zusammen auch wieder ein großes Rechteck. Die Mantelfläche eines Prismas ist also immer ein Rechteck, unabhängig von der Form der Grundfläche.

Beispiel zweier Prismen
Beispiel: dreieckiges Prisma und sechseckiges Prisma
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Volumen berechnen: Prisma

Da ein Prisma, je nach Grundfläche, unterschiedliche Formen annehmen kann, können wir keine konkrete allgemeingültige Prisma-Formel zur Berechnung des Volumens angeben.

Dennoch können wir eine, wenn auch relativ allgemeine, Formel zur Berechnung des Volumens angeben. (Diese Prisma-Formel ähnelt den Formeln zur Berechnung des Volumens eines Quaders bzw. eines Würfels.)

Merke

Merke

Hier klicken zum Ausklappen

$V_{Prisma} = G  ~ \cdot ~h$

$G$ = Grundfläche

$h$ = Höhe des Prismas

Da die Form der Grundfläche variabel ist, können wir keine konkretere Formel aufstellen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Berechne das Volumen des beschriebenen Prismas:

Die Grundfläche des Prismas ist ein Dreieck. Die Grundseite des Dreiecks ($g_D$) beträgt $6~cm$ und die Höhe des Dreiecks ($h_D$) beträgt $4~cm$. Die Höhe des Prismas ($h_{Prisma}$) beträgt $12~cm$.

In unserem Beispiel ist die Grundseite ein Dreieck. Wir benötigen also zunächst den Flächeninhalt des Dreiecks. Die Formel dazu lautet:

$G_{Prisma}=A_{Dreieck} = \frac{1}{2} \cdot g_D \cdot h_D$

Da wir nun wissen, wie wir die Grundfläche des Prismas berechnen müssen, können wir die Formel für das Volumen des Prismas neu aufstellen:

$V_{Prisma} = G_{Prisma}  ~ \cdot ~h_{Prisma}$

$\leftrightarrow~~~V_{Prisma} = \frac{1}{2} \cdot g_D \cdot h_{D} \cdot h_{Prisma}$

Nun setzen wir die gegebenen Werte ein und erhalten:

$V_{Prisma} = \frac{1}{2} \cdot 6~cm~ \cdot 4~cm~ \cdot 12~cm~=~144~cm^3$

Oberfläche berechnen

Auch bei der Oberfläche, bzw. dem Oberflächeninhalt können wir nur eine ganz allgemeine Prisma-Formel aufstellen. So setzt sich die Oberfläche eines Prismas aus dem Flächeninhalt der Deck-, der Grund- und der Mantelfläche zusammen.

$O_{Prisma} = A_{Grundfläche} + A_{Deckfläche} + A_{Mantelfläche}$

Da Grund- und Deckfläche gleich groß sind, können wir die Formel vereinfachen:

Merke

Merke

Hier klicken zum Ausklappen

$O_{Prisma} = 2\cdot A_{Grundfläche} + A_{Mantelfläche}$

Je nachdem welche Form die Grundfläche des Prismas besitzt, musst du die richtige Prisma-Formel für das entsprechende Vieleck finden.

Die Mantelfläche eines Prismas ist immer ein Rechteck. Die beiden Seitenlängen dieses Rechtecks sind bekannt: Die eine Seitenlänge des Rechtecks entspricht dem Umfang der Grundfläche ($U_{Grundfläche}$) und die andere Seitenlänge entspricht der Höhe des Prismas ($h_{Prisma}$). Für die Berechnung der Mantelfläche können wir also eine Formel aufstellen:

Merke

Merke

Hier klicken zum Ausklappen

$A_{Mantel} = U_{Grundfläche} \cdot h_{Prisma}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

Berechne die Oberfläche des folgenden Prismas.

Wie groß ist die Oberfläche dieses Prismas?
Wie groß ist der Oberflächeninhalt dieses Prismas?

Die Grund- und Deckfläche des Prismas sind dreieckig. Der Flächeninhalt eines Dreiecks berechnet sich nach folgender Formel:

$A_{Dreieck} = \frac{1}{2} \cdot g_D \cdot h_D$

$g_D$ = Grundseite des Dreiecks

$h_D$ = Höhe des Dreiecks

Grundseite und Höhe des Dreiecks können wir aus der Zeichnung ablesen.

$A_{Grundfläche} = \frac{1}{2} \cdot 12~cm \cdot 5~cm = 30~cm^2$

Als nächstes berechnen wir die Mantelfläche:

$A_{Mantel} = U_{Grundfläche}\cdot h_{Prisma} = (9~cm + 12~cm + 6~cm) \cdot 20~cm = 540~cm^2$

Haben wir Grund- und Mantelfläche berechnet, müssen wir die Werte nur noch addieren und erhalten so die Oberfläche des Prismas:

$O_{Prisma} = 2\cdot A_{Grundfläche} + A_{Mantelfläche} = 2\cdot 30~cm^2 + 540~cm^2 = 600~cm^2$

Nun hast du alles Wichtige gelernt, was du an Prismen berechnen kannst. Teste dein neu erlerntes Wissen zu Prismen in unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Ein Prisma besitzt als Grundfläche ein rechtwinkliges Dreieck. Die Katheten des Dreiecks sind $3~cm$ und $5~cm$ lang. Die Höhe des Prismas beträgt $10~cm$. Wie groß ist die Mantelfläche?

Teste dein Wissen!

Welche Form hat die Grundfläche eines Prismas?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche beiden Flächen eines Prismas sind gleich groß?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Das Volumen eines $12~cm$ hohen Prismas beträgt $60~cm^3$. Wie groß ist die Grundfläche?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Geometrie

Weitere Erklärungen & Übungen zum Thema

Dreieck mit H?he
Höhensatz des Euklid verstehen und beweisen
Kathetensatz des Euklid
Kathetensatz des Euklid - Was ist das?
Viereck mit zwei rechten Winkeln.
Satz des Pythagoras - Textaufgabe mit Lösungen
Rechtwinkliges Dreieck.
Was ist der Satz des Pythagoras? - Formel und Beweis
Gr??en im Kegelstumpf
Kegelstumpf: Höhe, Volumen und Flächen berechnen
Aufbau eines Kreiskegels.
Kegel: Oberfläche und Volumen berechnen
Kugelsegment
Kugelsegment und Kugelausschnitt
Der Hexaeder
Was sind platonische Körper?
Pyramidenstumpf
Pyramidenstumpf: Volumen und Oberfläche berechnen
Der Quader.
Quader und Würfel: Formeln für Fläche und Volumen
Die Kugel.
Umfang, Oberfläche und Volumen einer Kugel: Formeln
Beispiel zweier Prismen
Was ist ein Prisma? - Volumen und Oberfläche berechnen
Pyramiden im Quader.
Pyramide: Oberfläche und Volumen berechnen
Aufbau eines Zylinders
Zylinder: Oberfläche und Volumen berechnen
scheitelwinkel-2
Winkelarten und Winkeltypen im Überblick
winkel-5
Winkel messen mit einem Geodreieck
winkel-alltag
Was ist ein Winkel und welche Winkelarten gibt es?
winkel zeichnen 4
Winkel zeichnen mit einem Geodreieck
innenwinkelsumme-dreieck
Winkel berechnen - Formel und Aufgaben
uebersicht-winkel.
Winkelarten und Winkeltypen bestimmen
Achsenspiegelung
Achsenspiegelung: Punkte an einer Achse spiegeln
diagonale
Diagonale von Vierecken und Quadraten berechnen
gerade
Gerade, Strecke, Strahl zeichnen - Einführung in die Geometrie
sssdreieckskonstruktion3
Kreis und Dreieck mithilfe eines Zirkels zeichnen
lot faellen 1
Lot fällen - Schritt für Schritt erklärt
mittelsenkrechte-halbieren einer strecke
Wie zeichnet man eine Mittelsenkrechte?
parallel Geraden
So zeichnest du parallele Geraden
punktspiegelung 3
Punktspiegelung - Schritt für Schritt erklärt
Punktspiegelung_zentrum_2
Spiegelpunkt und Spiegelachse konstruieren
punktspiegelung_2_neu
Unterscheidung Achsen- und Punktspiegelung
winkelhalbiente_7
Winkelhalbierende konstruieren und zeichnen
umfangswinkelsatz_beweis2
Peripheriewinkelsatz und Umfangswinkelsatz - Erklärung und Beweis
sssdreieckskonstruktion3
Kongruenzsätze: Dreiecke konstruieren - Erklärung
Bitte Beschreibung eingeben
Kosinus - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Sinus - Rechnen mit der Winkelfunktion
Bitte Beschreibung eingeben
Tangens - Rechnen mit der Winkelfunktion
leicht erkl?rt text 1
Winkelfunktionen in rechtwinkligen Dreiecken
tricks mit 10
Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen
tan-1
Winkelfunktionen: Textaufgabe mit Lösung
leicht erkl?rt text 1
Winkelfunktionen: Sinus, Cosinus & Tangens (Formeln)
Zwei ?hnliche Dreiecke
Wie lauten die Kongruenzsätze?
Symmetrie Achsensymmetrie anhand eines Vielecks
Symmetrie von Figuren: Erklärung und Abbildungen
Strahlens?tze Anwendungsbeispiele
Strahlensätze - Aufgaben mit Lösungen
Zweiter Strahlensatz
Erster und zweiter Strahlensatz: Formel und Erklärung
Zentrische Streckung Beispiel
Zentrische Streckung - Einführung & Erklärung
Allgemeine Darstellung eines Dreiecks
Flächeninhalt und Umfang von Dreiecken berechnen
Parallelogramm mit der H?he ha
Flächeninhalt und Umfang eines Parallelogramms berechnen
Fl?cheninhalt eines Parallelogramms
Trapez: Flächeninhalt und Umfang berechnen
drache_bezeichnungen
Drachenviereck - Flächeninhalt und Konstruktion
Von links nach rechts: Quadrat, Parallelogramm, Dreieck, Trapez
Figuren und Flächen in der Mathematik - Eine Einführung
Strecke zwischen A und B
Was ist eine Strecke, eine Halbgerade und eine Gerade?
Eine allgemeine Raute
Raute - Eigenschaften, Flächeninhalt, Umfang berechnen
vielecke
Regelmäßige Vielecke konstruieren und berechnen
zusammengestzte__flaechen_beispiel
Zusammengesetzte Flächen - Flächeninhalt und Umfang
Quadrat (links) und Rechteck (rechts)
Rechtecke und Quadrate: Umfang und Flächeninhalt berechnen
Dreieck mit verl?ngerten Seiten
Ankreis eines Dreiecks konstruieren - Schritt für Schritt erklärt
Umkreismittelpunkt eines Dreiecks
Besondere & ausgezeichnete Punkte im Dreieck
Beispiel f?r ein gleichseitiges Dreieck
Dreiecksarten - Namen und Eigenschaften
Schnittpunkt der Winkelhalbierenden
So konstruierst du Umkreis und Inkreis eines Dreiecks
Dreieck mit H?he
Diese Formeln brauchst du zum Dreieck berechnen!
Rechteck 6 x 4
Dimensionen der Geometrie: Flächen und ihre Berechnung
Schr?gbild eines W?rfels
Körpernetze erstellen - Beispiele und Übungsaufgaben
Schr?gbild eines allgemeinen Quaders
Schrägbilder einfacher Figuren zeichnen
Allgemeines Viereck
Vierecke - Eigenschaften und Arten
Schr?gbild eines allgemeinen Quaders
Dimensionen der Geometrie: Volumen berechnen
Schr?gbild eines allgemeinen Quaders
Quader: Fläche und Volumen berechnen
regelm??iges Oktagon
Vielecke: Arten und Eigenschaften
geraden_kreis
Geraden, Strecken und Winkel am Kreis
pi-beweis
Was ist die Kreiszahl Pi? - Erklärung und Herleitung
satz-des-thales
Satz des Thales - Erklärung und Beweis
kreis-1
Kreis - So berechnest du Flächeninhalt und Umfang!
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Berrin A., vom

Meine Tochter ist zufrieden und kommt gerne

anonymisiert, vom

Alle super freundlich.

Kerstin B., vom

Die Kommunikation mit dem Studienkreis in Brühl zwischen Leitung, Eltern und Kind ist schnell, direkt und ausführlich erklärt. Mein Sohn hat nur positive Erfahrungen bis jetzt dort gemacht.

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2021
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 Probestunden GRATIS & unverbindliche Beratung

In den Probestunden kann Ihr Kind uns testen und die Nachhilfe im Studienkreis kennenlernen.

In einem unverbindlichen Beratungsgespräch mit Ihnen, finden wir gemeinsam die optimale Förderung für Ihr Kind.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2 x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8582