Mathematik > Geometrie

Pyramide: Oberfläche und Volumen berechnen

Inhaltsverzeichnis:

Ihr nehmt gerade die Pyramide in Geometrie in Mathe durch? In diesem Lerntext lernst du den Aufbau einer Pyramide kennen. Außerdem lernst du, wie du die Grundfläche, Mantelfläche, Oberfläche und das Volumen einer Pyramide berechnen kannst. Wir zeigen dir dazu alle wichtigen Formeln und wie diese Formeln hergeleitet werden.

Was ist eine Pyramide? - Übersicht

Die Pyramide ist ein geometrischer Körper, der aus einem Vieleck als Grundfläche, mindestens 3 gleichschenkligen Dreiecken als Mantelfläche und einer Spitze besteht. Die Mantelfläche einer Pyramide besitzt genauso viele Dreiecke, wie die Grundfläche Seiten hat. Die regelmäßige Form einer Pyramide besteht aus einem Quadrat als Grundfläche und entsprechend vier kongruenten gleichschenkligen Dreiecken. Wichtige Größen der Pyramide sind die Seitenlänge $a$ der Grundfläche, die Höhe $h_{Py}$ der Pyramide und die Höhe $h_{Dreieck}$ der Dreiecke. Die Höhe der Pyramide reicht vom Mittelpunkt der Grundfläche, d.h. dem Schnittpunkt der Diagonalen, bis zur Spitze.

Aufbau der Pyramide
Aufbau der Pyramide

Darüber hinaus gibt es weitere Arten von Pyramiden, die alle unterschiedliche Grundflächen besitzen. Eine Pyramide mit einem Dreieck als Grundfläche nennt man dreiseitige Pyramide, weil ihre Mantelfläche jeweils drei Seiten hat. Analog dazu nennt man Pyramiden mit einem Fünfeck als Grundfläche fünfseitige Pyramiden und solche mit einem Sechseck als Grundfläche sechsseitige Pyramiden.

Methode

Methode

Hier klicken zum Ausklappen
  • Grundfläche berechnen: $A_{Grundfläche} = a \cdot a = a^2$
  • Oberfläche berechnen: $O_{Pyramide} = a^2 + 4 \cdot (\frac{1}{2} \cdot a \cdot h_{Dreieck})$
  • Mantelfläche berechnen: $A_{Mantel} = 4 \cdot (\frac{1}{2} \cdot a \cdot h_{Dreieck})$
  • Volumen berechnen: $V_{Pyramide} = \frac{1}{3} \cdot a^2 \cdot h_{Pyramide}$

Die Berechnungen zur Grundfläche, Oberfläche, Mantelfläche und zum Volumen an der Pyramide werden im Folgenden beispielhaft anhand einer vierseitigen Pyramide erklärt.

Pyramide berechnen: Grundfläche

Die Grundfläche einer vierseitigen Pyramide errechnet sich wie der Flächeninhalt eines Quadrats: Länge mal Breite.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Grundfläche einer vierseitigen Pyramide mit der Seitenlänge $a$ 

$A_{Grundfläche} = a \cdot a = a^2$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Pyramide berechnen: Mantelfläche

Die Mantelfläche einer vierseitigen Pyramide besteht aus vier gleichschenkligen Dreiecken. Gleichschenklige Dreiecke sind Dreiecke mit zwei gleichlangen Seiten. Der Flächeninhalt gleichschenkliger Dreiecke errechnet sich wie folgt:

$A_{Dreieck} = \frac{1}{2} \cdot Grundseite \cdot Höhe = \frac{1}{2} \cdot a \cdot h_{Dreieck}$

Da die Mantelfläche aus insgesamt vier Dreiecken besteht, müssen wir den errechneten Flächeninhalt noch mit $4$ multiplizieren.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Mantelfläche 

$A_{Mantel} = 4 \cdot (\frac{1}{2} \cdot a \cdot h_{Dreieck})$

Oberfläche einer Pyramide

Die Oberfläche einer Pyramide ist die Summe aus Grund- und Mantelfläche.

Merke

Merke

Hier klicken zum Ausklappen

Berechnung der Oberfläche

$O_{Pyramide} =~Grundfläche~+~Mantelfläche~= a^2 +  4 \cdot (\frac{1}{2} \cdot a \cdot h_{Dreieck})$

Volumen einer Pyramide

Die Formel zur Volumenberechnung einer Pyramide, in diesem Falle einer vierseitigen Pyramide, muss zunächst hergeleitet werden: In einen Würfel der Kantenlänge $a$ passen insgesamt sechs regelmäßige vierseitige Pyramiden, deren Seitenlänge ebenfalls $a$ beträgt. 

Pyramiden in einem Würfel.
Pyramiden in einem Würfel.

$6 \cdot V_{Pyramide} = V_{Würfel}$

Halbiert man den Würfel, erhält man ein Quader mit den Seitenlängen $a$ und der Höhe $h_{Pyramide}$. In diesen halbierten Würfel passen nur noch drei der Pyramiden.

Pyramiden im Quader.
Pyramiden im Quader.

$3 \cdot V_{Pyramide} = \frac{1}{2} \cdot V_{Würfel} = V_{Quader}$

Das Volumen des Quaders können wir mit bekannten Größen ausdrücken:

$V_{Quader} = Länge~\cdot~Breite~\cdot~Höhe = a \cdot a \cdot h_{Pyramide}$

$3 \cdot V_{Pyramide} = a \cdot a \cdot h_{Pyramide}$

Die Gleichung lässt sich nach dem Volumen der Pyramide umstellen, indem wir durch $3$ teilen.

$V_{Pyramide} =  \frac{1}{3} \cdot a \cdot a \cdot h_{Pyramide} = \frac{1}{3} \cdot a^2 \cdot h_{Pyramide}$

Merke

Merke

Hier klicken zum Ausklappen

Volumen einer Pyramide

$V_{Pyramide} = \frac{1}{3} \cdot~Grundseite~ \cdot ~Höhe~$

$V_{Pyramide} = \frac{1}{3} \cdot a^2 \cdot h_{Pyramide}$

Teste dein neu erlerntes Wissen nun mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie groß ist die Oberfläche einer Pyramide mit der Höhe $h_{Dreieck} = 5~cm$  und der Kantenlänge $a=1~cm$?

Teste dein Wissen!

Wie groß ist die Mantelfläche einer Pyramide mit der Höhe $h_{Dreieck} = 8~cm$  und der Kantenlänge $a=3~cm$?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist das Volumen einer Pyramide mit der Höhe $h_{Pyramide}= 10~cm$ und der Kantenlänge $a=4~cm$?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist korrekt?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8583