Suche
Kontakt
>
Mathematik > Geometrie

Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen

Winkelfunktionen im nicht-rechtwinkligen Dreieck berechnen! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Wenn du mit Dreiecken arbeitest kann es sein, dass du Aufgaben mit nicht rechtwinkligen Dreiecken bekommst. Hierfür gibt es ein paar einfache Tricks.

Methode

Wenn du kein rechtwinkliges Dreieck gegeben hast, musst du dir in dem Dreieck ein passendes rechtwinkliges Dreieck bilden bzw. suchen.

Mit den Winkelfunktionen darfst du ausschließlich im rechtwinkligen Dreieck rechnen. Die Begründung dafür ist ganz einfach! Um zum Beispiel mit dem Sinus rechnen zu können, brauchst du eine Hypotenuse und ohne rechten Winkel gibt es in dem Dreieck keine Hypotenuse. Auch wenn wir mit dem Tangens rechnen, brauchen wir eine Hypotenuse, da wir sonst die Ankathete des Winkels nicht eindeutig bestimmen können.

Die Dreiecke sind vor allem in Textaufgaben versteckt und du musst dir zuerst überlegen, wo das Dreieck ist. Dann überprüfst du, ob das Dreieck einen rechten Winkel hat. Wenn das nicht der Fall ist, musst du einen rechten Winkel bilden.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispiele zu Sin, Cos und Tan in nicht rechtwinkligen Dreiecken

Beispiel

Aufgabe 1:

Dieses Dreieck hat keinen rechten Winkel. Trotzdem möchten wir die Höhe des Dreiecks berechnen, also wie hoch der Punkt A über der Seite a liegt.

tricks-1


Dafür müssen wir in dem Dreieck einen rechten Winkel bilden, also legen wir eine Gerade senkrecht zu der Linie a bis zum Punkt A. Diese Gerade entspricht gleichzeitig auch unserer gesuchten Höhe.
tricks-2


Nun können wir mit dem Sinus die Höhe berechnen. Dafür benötigen wir noch die Größe des Winkels $\beta$. Außerdem die Länge der Hypotenuse. Diese Angaben sind hier gegeben.

tricks-3

$Sinus(\beta) = \frac{Gegenkathete}{Hypotenuse}$

$sin(26,57^\circ) = \frac{Höhe}{8,94cm}$

$sin(26,57^\circ)\cdot{8,94cm} = Höhe$

${Höhe} \approx {4cm}$

Man hätte die Höhe auch mit dem Tangens berechnen können. Dafür müsste jedoch die Länge der Ankathete des Winkels $\beta$ gegeben sein.

Mit dem Kosinus können wir hier nicht arbeiten, da er das Verhältnis von Ankathete und Hypotenuse angibt, wir aber die Länge der Gegenkathete herausfinden müssen.  

Die Aufgabe könntest du auch mit dem Satz des Pythagoras berechnen. Dafür würdest du nicht die Angabe des Winkels benötigen, sondern die beiden Längen der zwei Seiten im rechten Winkel. Sieh dir dazu die Seite vom Satz des Pythagoras an. Link: Satz des Pythagoras

Beispiel

Aufgabe 2:

Hierbei möchten wir wieder die Höhe des Punktes $C$ berechnen.
Gegeben ist die Länge der Seite $a = 8,06 cm$, die Länge der Seite $c = 9 cm$ und die Größe des Winkels $\beta$ = 119,72°.

tricks mit 6

Versuche erst einmal allein in das Dreieck einen rechten Winkel einzuzeichnen.

Nun haben wir unser rechtwinkliges Dreieck. Wie du siehst kann der Winkel auch außerhalb des Dreiecks liegen. Du solltest nur darauf achten, dass hier die Seite c die Länge zwischen Punkt A und B ist. Die Länge zwischen Punkt B und D ist nicht gegeben!

tricks mit 9

Nun können wir die Angabe $c = 9 cm$ nicht gebrauchen, weil es keine vollständige Kathete aus unserem rechtwinkligen Dreieck ist. Auch der Winkel $119,74^\circ$ liegt nicht in unserem Dreieck. Wir können jedoch mit ihm den Winkel auf der anderen Seite von B berechnen. Eine Gerade hat immer einen Winkel von $180^\circ$, wenn wir nun die $119,74^\circ$ davon abziehen erhalten wir ihn. Also ist $\gamma = 60,24^\circ $ groß.

tricks mit 10

Wie du siehst haben wir einen Winkel und die Hypotenuse gegeben. Gesucht wird die Gegenkathete. Also rechnen wir mit dem Sinus.

$Sinus = \frac{Gegenkathete}{Hypotenuse}$

$sin(60,26^\circ) = \frac{Höhe}{8,06cm}$

${sin(60,26^\circ)}\cdot{8,06cm} = Höhe$

${Höhe} \approx {7cm}$

Textaufgabe und Lösung

Beispiel

 

 

textaufageb turm 1

Hier sehen wir einen Turm, dessen Höhe wir bestimmen wollen. Neben dem Turm befindet sich ein See, der einen Durchmesser von 15 m hat. Der Winkel zwischen dem See und der Spitze des Turmes beträgt 30 Grad und die Länge der linken Seite des Sees bis zur Turmspitze beträgt 22 m.

Als erstes müssen wir nun wieder ein rechtwinkliges Dreieck einzeichnen, um eine der Winkelfunktionen anwenden zu können.

Wir zeichnen eine Gerade von der Spitze des Turms bis zum Boden. Damit haben wir unser rechtwinkliges Dreieck gebildet und auch eine Kathete, die der Höhe des Turms entspricht. 
Nun zeichnen wir alle gegeben Längen ein. 
textaufgabe turm 3

Jetzt fragst du dich sicher, welche der Angaben du benötigst. Die Breite des Sees (15 m) hilft uns nicht weiter, da sie sich auf das nicht rechtwinklige Dreieck bezieht. Also benötigen wir die Größe des Winkels ($30^\circ$) und die Länge der Hypotenuse ($22 m$). Überlege mit welcher Winkelfunktion du rechnen möchtest.

Wir suchen die Gegenkathete von $30^\circ$ und haben die Hypotenuse gegeben. Also rechnen wir mit dem Sinus.

$sin(30^\circ) = \frac{Gegenkathete}{Hypotenuse}$

$sin(30^\circ) = \frac{Höhe}{22m}$

$sin(30^\circ) \cdot 22m  = 11m$


Der Turm ist $11 m $ hoch.

Jetzt weißt du, wie du die Winkelfunktionen auf Dreiecke anwenden kannst, die nicht rechtwinklig sind. Dein neues Wissen kannst du nun in unseren Übungen austesten. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

In welches der vier Dreiecke wurde der rechte Winkel richtig eingezeichnet, um die Länge der Seite b zu berechnen?


tricks aufgabe 6




Teste dein Wissen!

Wir haben einen Deich gegeben, von dem die gesamte Breite ermittelt werden soll. Die Krone des Deiches ist $3 m$ lang und $4 m$ hoch. Zur Seeseite beträgt der Winkel $\alpha = 24^\circ$ und zur Landseite $\beta = 53^\circ$.
Berechne nun die Breite des Deiches.

tricks aufgabe 2

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

tricks mit 4


Du siehst eine Leiter von der die Höhe ermittelt werden soll. Die beiden Beine der Leiter sind 6 m lang und der Öffnungswinkel beträgt $30^\circ$. Berechne die Höhe der Leiter.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie hoch ist der Dachstuhl von diesem etwas krummen Haus? Runde auf eine Nachkommastelle.

tricks aufgabe 7

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

26.08.2024
Angenehme Lernatmosphäre, kleine Gruppen, individuelle Lernbetreuung durch kompetente Nachhilfelehrer
20.08.2024
Es wird sich sehr um die Kinder individuell gekümmert.
18.08.2024 , von Silke S.
Weil unsere Tochter Alina Dank der guten Nachhilfe und der flexiblen Lernzeiten ihre Nachprüfung im Fach Mathematik erfolgreich bestanden hat.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7843