Mathematik > Geometrie

Zentrische Streckung - Einführung & Erklärung

Inhaltsverzeichnis:

Teil der Mathematik ist die Zentrische Streckung. In diesem Lerntext erhältst du zur Zentrischen Streckung eine Erklärung. Bereits im Lerntext Wie lauten die Kongruenzsätze wurde die Zentrische Streckung behandelt. Dort haben wir Dreiecke, die vergrößert oder verkleinert wurden, behandelt. Doch wie genau eine Figur verkleinert oder vergrößert werden kann, haben wir noch nicht besprochen. Die Anwendung der Zentrischen Streckung erklären wir dir jetzt. Am Ende des Lerntextes findest du zur Zentrischen Streckung Aufgaben mit Lösungen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Die Zentrische Streckung: Erklärung

Die Zentrische Streckung hat mit dem Strecken einer Figur zu tun. Dies passiert bei vielen Prozessen im Computer automatisch. Wenn du zum Beispiel diese Webseite aufrufst, passt dein Browser diese Webseite automatisch auf die Größe deines Bildschirmes an, damit du nicht etwa einen schwarzen Balken am Rand hast oder nur einen Teil des Textes sehen kannst. Dieses Phänomen können wir mathematisch beschreiben.

Figuren werden bei der Zentrischen Streckung vergrößert oder verkleinert, wobei die Verhältnisse der einzelnen Längen und Strecken zueinander beibehalten werden. Ausgangspunkt der Streckung ist ein bestimmter Punkt, das sogenannte Streckungszentrum.

Merke

Merke

Hier klicken zum Ausklappen

Bei der Zentrischen Streckung werden Figuren vergrößert oder verkleinert, wobei die Seitenverhältnisse unverändert bleiben. Ausgangspunkt ist das Streckungszentrum.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Verdeutlichen wir die Zentrische Streckung an einem Dreieck als Beispiel:

Bauarbeiter sollen einen Weg mit Dreiecken verzieren. Das Muster besteht abwechselnd aus kleinen und großen Dreiecken. Dabei sind die großen Dreiecke immer genau doppelt so groß wie die kleinen Dreiecke. Das Muster soll bis zum Ende des Weges fortgesetzt werden.

Zentrische Streckung Beispiel

Die Ausgangsfigur ist dieses Dreieck. Auf dieses Dreieck soll nun ein doppelt so großes Dreieck folgen. Wir müssen das abgebildete Dreieck also vergrößern.

Wir zeichnen zuerst eine Halbgerade vom Streckungszentrum $Z$ durch die Punkte $A$, $B$ und $C$. 

Zentrische Streckung Beispiel

Jetzt müssen wir ein wenig rechnen. In der Aufgabenstellung steht, dass das zweite Dreieck genau doppelt so groß sein soll wie das erste Dreieck. Der Streckungsfaktor beträgt also $2$. Der Abstand vom Streckungszentrum $Z$ zum Punkt $C$ beträgt $6~ cm$. Da der Streckungsfaktor $2$ beträgt, muss der Abstand von $Z$ zu $C'$ $12~cm$ betragen ($2 \cdot 6~cm=12~cm$). Analog werden die Punkte $A'$ und $B'$ gefunden. Das heißt, du musst zuerst die Längen der Abstände von $Z$ zu $A$ und von $Z$ zu $B$ messen und diese dann verdoppeln. 

 Es ergibt sich:

Zentrische Streckung Beispiel

$\overline{ZA}= 4,12~cm~~\rightarrow~~\overline{ZA'} = 2 \cdot 4,12~cm = 8,24~cm$

Jetzt zeichnen wir die jeweiligen Bildpunkte ein und erhalten so das Grundgerüst des vergrößerten Dreiecks.

Zentrische Streckung Beispiel

Nun verbinden wir die Bildpunkte und erhalten so das gestreckte/vergrößerte Dreieck.

Zentrische Streckung Beispiel

Der Streckungsfaktor kann auch negativ sein. Der Streckungsfaktor wird also zunächst immer kleiner, bis er den Wert $0$ erreicht. Ist der Streckungsfaktor $0$, werden alle Punkte im Streckungszentrum abgebildet, so dass die Bildfigur aus einem einzigen Punkt besteht, dem Streckungszentrum. Wenn der Streckungsfaktor nun noch kleiner wird, also negativ, werden die Punkte am Streckungszentrum gespiegelt. Die Bildfigur entsteht dann auf der anderen Seite des Streckungszentrums.

Zentrische Streckung - Zirkelzeichnung

Man kann eine Streckung auch mit dem Zirkel anfertigen. Wir müssen um den jeweiligen Punkt (im Bild Punkt $A$) einen Kreis so schlagen, dass $Z$ auf dem Kreis liegt. Dort, wo die Hilfsgerade den Kreis schneidet, liegt der gespiegelte Punkt $A'$. Dies funktioniert natürlich nur, wenn der Streckungsfaktor $2$ beträgt. Bei anderen Streckungsfaktoren ändert sich die Anzahl der zu zeichnenden Kreise. So muss man bei einer Streckung mit dem Faktor $3$ zwei Kreise zeichnen (Punkt $A''$ wäre in diesem Fall der gesuchte Bildpunkt) etc.

Zentrische Streckung Zirkel

Flächeninhalt von zentrisch gestreckten Figuren

Für den Flächeninhalt einer gestreckten Figur gibt es eine einfache Regel: Der Flächeninhalt der Originalfigur wird mit dem Faktor $\bf{k^2}$ multipliziert. 

Merke

Merke

Hier klicken zum Ausklappen

Der Flächeninhalt der gestreckten Figur ist genau das k²-fache des Originalflächeninhaltes, also:

$\mathbf{A_{gestreckt} = A_{original} \cdot k^2}$

Zur Vertiefung dieses Themas schau auch noch einmal in die Aufgaben! Viel Spaß und Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was passiert mit der Seite a, die eine Länge von 4,25 cm hat, wenn sie mit dem Streckungsfaktor 0,5 gestreckt wird?

Teste dein Wissen!

Was passiert bei der Zentrischen Streckung? Markiere die richtige Antwort.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist der Streckungsfaktor (k), wenn eine Figur mit der Seitenlänge a = 5 cm zu einer Bildfigur mit der Seitenlänge a' = 15 cm vergrößert wurde?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Der Flächeninhalt einer gestreckten Figur beträgt 50 cm². Der Streckungsfaktor ist 5. Wie groß ist der Flächeninhalt der Ausgangsfigur?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8590