Suche
Kontakt
>
Mathematik > Geometrie

Zentrische Streckung - Einführung & Erklärung

Zentrische Streckung - Einführung & Erklärung! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Teil der Mathematik ist die Zentrische Streckung. In diesem Lerntext erhältst du zur Zentrischen Streckung eine Erklärung. Bereits im Lerntext Wie lauten die Kongruenzsätze wurde die Zentrische Streckung behandelt. Dort haben wir Dreiecke, die vergrößert oder verkleinert wurden, behandelt. Doch wie genau eine Figur verkleinert oder vergrößert werden kann, haben wir noch nicht besprochen. Die Anwendung der Zentrischen Streckung erklären wir dir jetzt. Am Ende des Lerntextes findest du zur Zentrischen Streckung Aufgaben mit Lösungen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Die Zentrische Streckung: Erklärung

Die Zentrische Streckung hat mit dem Strecken einer Figur zu tun. Dies passiert bei vielen Prozessen im Computer automatisch. Wenn du zum Beispiel diese Webseite aufrufst, passt dein Browser diese Webseite automatisch auf die Größe deines Bildschirmes an, damit du nicht etwa einen schwarzen Balken am Rand hast oder nur einen Teil des Textes sehen kannst. Dieses Phänomen können wir mathematisch beschreiben.

Figuren werden bei der Zentrischen Streckung vergrößert oder verkleinert, wobei die Verhältnisse der einzelnen Längen und Strecken zueinander beibehalten werden. Ausgangspunkt der Streckung ist ein bestimmter Punkt, das sogenannte Streckungszentrum.

Merke

Bei der Zentrischen Streckung werden Figuren vergrößert oder verkleinert, wobei die Seitenverhältnisse unverändert bleiben. Ausgangspunkt ist das Streckungszentrum.

Beispiel

Verdeutlichen wir die Zentrische Streckung an einem Dreieck als Beispiel:

Bauarbeiter sollen einen Weg mit Dreiecken verzieren. Das Muster besteht abwechselnd aus kleinen und großen Dreiecken. Dabei sind die großen Dreiecke immer genau doppelt so groß wie die kleinen Dreiecke. Das Muster soll bis zum Ende des Weges fortgesetzt werden.

Zentrische Streckung Beispiel

Die Ausgangsfigur ist dieses Dreieck. Auf dieses Dreieck soll nun ein doppelt so großes Dreieck folgen. Wir müssen das abgebildete Dreieck also vergrößern.

Wir zeichnen zuerst eine Halbgerade vom Streckungszentrum $Z$ durch die Punkte $A$, $B$ und $C$. 

Zentrische Streckung Beispiel

Jetzt müssen wir ein wenig rechnen. In der Aufgabenstellung steht, dass das zweite Dreieck genau doppelt so groß sein soll wie das erste Dreieck. Der Streckungsfaktor beträgt also $2$. Der Abstand vom Streckungszentrum $Z$ zum Punkt $C$ beträgt $6~ cm$. Da der Streckungsfaktor $2$ beträgt, muss der Abstand von $Z$ zu $C'$ $12~cm$ betragen ($2 \cdot 6~cm=12~cm$). Analog werden die Punkte $A'$ und $B'$ gefunden. Das heißt, du musst zuerst die Längen der Abstände von $Z$ zu $A$ und von $Z$ zu $B$ messen und diese dann verdoppeln. 

 Es ergibt sich:

Zentrische Streckung Beispiel

$\overline{ZA}= 4,12~cm~~\rightarrow~~\overline{ZA'} = 2 \cdot 4,12~cm = 8,24~cm$

Jetzt zeichnen wir die jeweiligen Bildpunkte ein und erhalten so das Grundgerüst des vergrößerten Dreiecks.

Zentrische Streckung Beispiel

Nun verbinden wir die Bildpunkte und erhalten so das gestreckte/vergrößerte Dreieck.

Zentrische Streckung Beispiel

Der Streckungsfaktor kann auch negativ sein. Der Streckungsfaktor wird also zunächst immer kleiner, bis er den Wert $0$ erreicht. Ist der Streckungsfaktor $0$, werden alle Punkte im Streckungszentrum abgebildet, so dass die Bildfigur aus einem einzigen Punkt besteht, dem Streckungszentrum. Wenn der Streckungsfaktor nun noch kleiner wird, also negativ, werden die Punkte am Streckungszentrum gespiegelt. Die Bildfigur entsteht dann auf der anderen Seite des Streckungszentrums.

Zentrische Streckung - Zirkelzeichnung

Man kann eine Streckung auch mit dem Zirkel anfertigen. Wir müssen um den jeweiligen Punkt (im Bild Punkt $A$) einen Kreis so schlagen, dass $Z$ auf dem Kreis liegt. Dort, wo die Hilfsgerade den Kreis schneidet, liegt der gespiegelte Punkt $A'$. Dies funktioniert natürlich nur, wenn der Streckungsfaktor $2$ beträgt. Bei anderen Streckungsfaktoren ändert sich die Anzahl der zu zeichnenden Kreise. So muss man bei einer Streckung mit dem Faktor $3$ zwei Kreise zeichnen (Punkt $A''$ wäre in diesem Fall der gesuchte Bildpunkt) etc.

Zentrische Streckung Zirkel

Flächeninhalt von zentrisch gestreckten Figuren

Für den Flächeninhalt einer gestreckten Figur gibt es eine einfache Regel: Der Flächeninhalt der Originalfigur wird mit dem Faktor $\bf{k^2}$ multipliziert. 

Merke

Der Flächeninhalt der gestreckten Figur ist genau das k²-fache des Originalflächeninhaltes, also:

$\mathbf{A_{gestreckt} = A_{original} \cdot k^2}$

Zur Vertiefung dieses Themas schau auch noch einmal in die Aufgaben! Viel Spaß und Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was passiert mit der Seite a, die eine Länge von 4,25 cm hat, wenn sie mit dem Streckungsfaktor 0,5 gestreckt wird?

Teste dein Wissen!

Was passiert bei der Zentrischen Streckung? Markiere die richtige Antwort.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist der Streckungsfaktor (k), wenn eine Figur mit der Seitenlänge a = 5 cm zu einer Bildfigur mit der Seitenlänge a' = 15 cm vergrößert wurde?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Der Flächeninhalt einer gestreckten Figur beträgt 50 cm². Der Streckungsfaktor ist 5. Wie groß ist der Flächeninhalt der Ausgangsfigur?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

10.04.2024 , von Claudia S.
Es wurde alles möglich gemacht, was wir wollten. Alles ist gut organisiert und der Einzelunterricht individuell und äußerst hilfreich.
10.04.2024 , von Frank K.
Wir haben großartige Erfahrungen gemacht. Unser Sohn ist sehr zufrieden. Wir können es jeden empfehlen.👍👍
10.04.2024 , von Stephanie R.
Einfache Anmeldung; kompetente Betreuung.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8590