Mathematik > Geometrie

Strahlensätze - Aufgaben mit Lösungen

Inhaltsverzeichnis:

Im Lerntext zum Thema Strahlensätze haben wir die Formel des 1. Strahlensatzes und 2. Strahlensatzes kennengelernt. Wir haben gelernt, unter welchen Voraussetzungen wir die jeweiligen Strahlensätze anwenden können und wie wir die Gleichungen aufstellen müssen. In diesem Lerntext wollen wir dir nun zeigen, wo und wie du die Strahlensätze im Alltag anwenden kannst. Du bekommst also hier zum Thema Strahlensätze Aufgaben mit Lösungen. Wir betrachten daher nun zwei Beispiele aus dem Alltag. 

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Strahlensatz: Aufgabe 1

Beispiel

Beispiel

Hier klicken zum Ausklappen

Aufgabenstellung: Ein großer Baum soll gefällt werden. Dieser steht ca. 8 Meter von einem Haus entfernt. Die Frage ist nun, ob der Baum das Haus treffen könnte, wenn er umfällt. Als Hilfsmittel nutzen wir ein 30 cm langes Lineal, das wir in einem Abstand von 20 cm vor unser Auge halten. Ferner wissen wir, dass die Entfernung vom Auge zur Wurzel des Baumes ca. 8 Meter beträgt. Du kannst nun berechnen, ob der Baum beim Fallen das Haus beschädigen kann.

Strahlensätze Anwendungsbeispiele

Herangehensweise:

Wir machen eine Skizze und überlegen, welche Größe gesucht und welche Größen gegeben sind. Wir stehen vor einem Baum, dessen Höhe wir ermitteln sollen. Somit ist die Strecke zwischen Punkt E und Punkt F gesucht.

Wir wissen, dass wir das Lineal genau 20 cm von uns entfernt in der Hand halten. Weiter wissen wir, dass das Lineal genau 30 cm lang ist. Und wir kennen auch den Abstand vom Auge zur Baumwurzel, der ca. 8 Meter beträgt. In einer Skizze zusammengetragen, ergibt sich folgendes Bild:

Strahlensätze Anwendungsbeispiele

Wir erkennen, dass wir den zweiten Strahlensatz zur Berechnung der unbekannten Länge benutzen müssen. Wir stellen den zweiten Strahlensatz wie folgt auf:

$\large{\frac{b}{b'} = \frac{l}{x}}$

Wir setzen die bekannten Werte ein. Daraus ergibt sich:

$\large{\frac{b}{8~m} = \frac{30~cm}{x}}$

Um die Länge der Seite $x$ berechnen zu können, fehlt uns nun leider noch die Länge der Seite $b$. Wir gucken nun nochmals genau auf die Skizze und stellen fest, dass wir die Länge der Seite $b$ mithilfe des Satz des Pythagoras berechnen können. Die Seite $b$ ist die Hypotenuse in einem rechtwinkligen Dreieck. Es gilt:

$\large{b^2 = e^2 + (\frac{1}{2}\cdot l)^2}$

Strahlensätze Anwendungsbeispiele

Wir setzen nun die Werte, die wir kennen, ein und erhalten dann:

$\large{b^2 = 20^2 + 15^2}$

$\large{b^2 = 625}$

$\large{b_1 = 25}$   und   $\large{b_2 = -25}$

Das negative Ergebnis macht hier keinen Sinn, da eine Länge keinen negativen Wert annehmen kann. Wir können $b=-25$ demnach ausschließen. Die Länge der Strecke $b$ beträgt also $25$ Meter. Diesen Wert setzen wir nun in die Strahlensatz-Formel ein. Wir erhalten:

$\Large{\frac{25 ~cm}{800~ cm} = \frac{30 ~cm}{x}}$

Auf der linken Seite der Gleichung können wir die $cm$ kürzen. Nun bilden wir das Kreuzprodukt, um die Brüche aufzulösen. Wir erhalten:

$ 25 \cdot x = 800 \cdot 30~cm$

Mithilfe einer einfachen Äquivalenzumformung können wir $x$ nun berechnen und erhalten dann:

$ x = 960~cm$

Die Höhe des Baumes beträgt ca. $9,6$ Meter. Es besteht daher die Gefahr, dass der Baum im Fall das Haus trifft.

Strahlensatz: Aufgabe 2

Beispiel

Beispiel

Hier klicken zum Ausklappen

Es soll eine Seilbahn über einen See gebaut werden. Daher muss die Breite des Sees an einer bestimmten Stelle ermittelt werden, nämlich zwischen Punkt $A$ und Punkt $B$. Versuche, die Breite des Sees zwischen $A$ und $B$ mithilfe der gegebenen Werte zu berechnen.

Strahlensätze Anwendungsbeispiele

Zunächst fertigen wir eine Skizze an und tragen die gegebenen Werte ein. Da die Längen der Parallelen beide nicht bekannt sind, können wir nur den ersten Strahlensatz anwenden. Am geschicktesten ist es, den Strahlensatz so aufzustellen, dass die gesuchte Größe im Zähler eines Bruches steht:

$\large{\frac{x}{160~m} = \frac{960~m}{300~m}}$

Auf der rechten Seite können wir die Einheit $Meter$ kürzen. Danach multiplizieren wir über Kreuz, um den Bruch zu beseitigen. Wir erhalten:

$\large{x\cdot 300= 960\cdot 160~m}$

Nach einer einfachen Äquivalenzumformung erhalten wir:

$\large{x=512~Meter}$

Die Breite des Sees zwischen $A$ und $B$ beträgt ca. $512$ Meter.

Nun konntest du sicher nochmal mehr zum Thema Strahlensätze anhand der Anwendungsaufgaben verstehen. Zur Vertiefung schau auch noch einmal in die Übungen zum Strahlensatz! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die Länge der Strecke $\overline{ZA}~$.
Es gilt:
$\overline{ZB}~$ = 100 cm,
$\overline{ZC}~$ = 35 cm und
$\overline{ZD}~$ = 175 cm

Strahlensätze Anwendungsaufgabe

.

Teste dein Wissen!

Berechne mithilfe eines Strahlensatzes die Länge der Strecke $\overline{FG}$. Es gilt:
$\overline{HE}$ = 400 m,
$\overline{HG}$ = 50 m und
$\overline{ZG}$ = 150 m

Strahlensätze Anwendungsbeispiele

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne mithilfe eines Strahlensatzes die Länge der Strecke $\overline{ZH}~$.
Es gilt:
$\overline{ZF}~$ = 6 cm,
$\overline{ZE}~$ = 10 cm und
$\overline{ZG}~$ = 4 cm

Strahlensätze Anwendungsbeispiele

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Finde die Länge der Strecke $\overline{BD}~$ heraus.
Es gilt:
$\overline{AC}~$ = 100 cm,
$\overline{ZC}~$ = 35 cm und
$\overline{ZD}~$ = 175 cm

Strahlensätze Anwendungsaufgabe

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8588