Online Lernen | Mathematik Aufgaben | Geometrie Sinus, Kosinus und Tangens Winkelfunktionen: Textaufgabe mit Lösung

Winkelfunktionen: Textaufgabe mit Lösung

Spätestens in der 10. Klasse werden dir in der Geometrie Winkelfunktionen in Form von Textaufgaben begegnen. In diesem Lerntext wird eine Textaufgabe zum Thema Winkelfunktionen gelöst. Dabei wird im Detail auf die Vorgehensweise beim Lösen von solchen Textaufgaben eingegangen.

Lösen von Textaufgaben - Vorgehensweise

Methode

Methode

Hier klicken zum Ausklappen
  1. Suche das Dreieck und markiere den rechten Winkel.
  2. Was ist gesucht und was ist gegeben? Markiere dir dies in einer kleinen Skizze.
  3. Benenne die Seiten des Dreiecks (Gegenkathete, Ankathete und Hypotenuse).
  4. Mithilfe der Skizze kannst du nun überlegen, mit welcher Winkelfunktion du arbeiten kannst.
  5. Als Letztes musst du nur noch die Angaben in die Winkelfunktion einsetzen, eventuell ein wenig umstellen, und dann die gesuchte Größe berechnen.

Textaufgabe Winkelfunktionen

tan-1

Ein Mädchen (Standort 1) hat von seiner Oma (Standort 2) einen Ballon geschenkt bekommen. Das Mädchen lässt den Ballon versehentlich los und nun schwebt er 6 m über dem Boden. Wie weit sind die Oma und das Mädchen voneinander entfernt?

Gucke dir das Bild genau an, ergänze fehlende Angaben soweit wie möglich und versuche dann, die Entfernung zwischen Oma und Mädchen mithilfe einer Winkelfunktion zu berechnen. 

Lösungsweg der Textaufgabe

Wie berechnen wir nun den Abstand zwischen dem Mädchen und seiner Oma? Wir haben, wie du in der unteren Zeichnung siehst, zwei Dreiecke gegeben. In dem kleineren Dreieck ist die Ankathete des Winkels $\alpha$ der Abstand zwischen dem Mädchen und dem Punkt auf dem Boden unter dem Ballon. In dem größeren Dreieck ist die Ankathete des Winkels $\beta$ die Länge des Abstandes zwischen der Oma und dem Punkt auf dem Boden unter dem Ballon. Wenn wir nun diese beiden Längen berechnen und danach die beiden Längen voneinander subtrahieren, haben wir den Abstand zwischen Oma und Mädchen.

$\rightarrow$ Abstand zwischen Oma und Mädchen = (Länge von dem Punkt auf dem Boden unter dem Ballon bis zur Oma) - (Länge von dem Punkt auf dem Boden bis zum Mädchen)

tan-3

Wie berechnen wir nun die Länge des Abstandes zwischen dem Mädchen und dem Punkt auf dem Boden unter dem Ballon? Wir betrachten das Dreieck vom Winkel $\alpha$ aus. Wir kennen die Länge der Gegenkathete und suchen die Länge der Ankathete. Somit sind wir beim Tangens, denn nur in der Winkelfunktion Tangens kommen Gegenkathete und Ankathete vor.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Zur Vertiefung der Winkelfunktionen schaue unbedingt in den Lerntexten zu den drei Winkelfunktionen Sinus, Kosinus und Tangens rein. Dort findest du auch jeweils zu allen drei Winkelfunktionen Aufgaben zum Nachvollziehen dieses Themas.

$\alpha = 40,6 ^\circ;  Gegenkathete = 6~m;  Ankathete =~?$

$tan(\alpha) = \frac{Gegenkathete}{Ankathete}$

$tan(40,6 ^\circ) = \frac{6~m}{Ankathete}$

${tan(40,6 ^\circ)}\cdot{Ankathete} = 6~m$

$Ankathete = \frac{6~m}{tan(40,6 ^\circ)}$

${x} \approx {7~m}$

Der Abstand zwischen dem Mädchen und dem Punkt auf dem Boden unter dem Ballon beträgt also ungefähr $7$ Meter.

Uns fehlt nun noch der Abstand zwischen dem Punkt auf dem Boden unter dem Ballon und der Oma. Diesen Abstand können wir analog berechnen.

 

tan-2

Wir kennen $\beta$ und die Länge der Gegenkathete zu $\beta$. Gesucht ist die Länge der Ankathete zu $\beta$.

$\beta= 24,78^\circ;  Gegenkathete = 6~m,  Ankathete =~?$

$tan(\beta) = \frac{Gegenkathete}{Ankathete}$

$tan(24,78^\circ) = \frac{6~m}{Ankathete}$

${tan(24,78^\circ)}\cdot{Ankathete} = 6~m$

$Ankathete = \frac{6~m}{tan(24,78^\circ)}$

${x} \approx {13~m}$

Der Abstand zwischen der Oma und dem Punkt auf dem Boden unter dem Ballon beträgt also ungefähr $13$ Meter.

Wenn wir nun diese beiden Längen voneinander subtrahieren, erhalten wir die Entfernung zwischen dem Mädchen und seiner Oma.

$13~m - 7~m = 6~m$

Die Oma und das Mädchen stehen $6$ Meter voneinander entfernt.

Du hättest die Aufgabe im Übrigen auch anders lösen können. Häufig gibt es mehrere Möglichkeiten. Wichtig ist, dass du am Ende auf das richtige Ergebnis kommst.

Nun hast du einen Überblick darüber bekommen, wie man mit den Winkelfunktionen rechnet. Um dein Wissen zu vertiefen, teste dich in unseren Aufgaben zur Winkelfunktion mit Sinus, Kosinus und Tangens. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7844