Mathematik > Funktionen

Lineare Funktionen - Definition und Erklärung

Inhaltsverzeichnis:

Funktionen sind ein wichtiger Bestandteil der Mathematik. Eine Art sind die linearen Funktionen (lineare Zuordnungen), diese Art von Funktionsgleichungen werden wir dir hier im Detail erklären.

Linearen Funktionen: Definition 

Eine Funktion stellt immer das Verhältnis zweier Variablen dar. Meist werden die zwei Variablen $x$ und $y$ genannt. Dieses Verhältnis kann dann durch eine Gleichung ausgedrückt und in einem Koordinatensystem eingezeichnet werden.
Lineare Funktionen beschreiben immer ein lineares Verhältnis, bzw. eine lineare Zuordnung zwischen zwei Variablen. Daher sind ihre Graphen eine gerade Linie im Koordinatensystem.

Mathematisch ausgedrückt geht es um folgenden Zusammenhang:

Merke

Merke

Hier klicken zum Ausklappen

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m : Steigung}$
$\textcolor{blue}{n : y-Achsenabschnitt}$

$x :$ unabhängige Variable
$f(x) = y :$ abhängige Variable

beispiel-lineare-funnktion
Abbildung einer linearen Funktion mit y-Achsenabschnitt, Nullstelle und Steigungsdreieck
An diesem Beispiel können wir erstens den y-Achsenabschnitt, zweitens eine Nullstelle und drittens ein Steigungsdreieck erkennen.

Dabei sind alle Variablen, also $x$ und $y$ ( $y$ ist das Gleiche wie $f(x)$ ), $m$ und $n$, beliebige Zahlen. Je nach Besonderheit der Zahlen, sehen die Funktionen dann etwas anders aus. Es handelt sich jedoch immer um eine gerade Linie!

Schauen wir uns ein Beispiel an.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Lineare Funktionen: Beispielaufgabe

Kosten pro gekaufter Kugel Eis

Wir wollen eine Funktion erstellen, welche das Verhältnis zwischen der Anzahl gekaufter Kugeln Eis zum Preis abbildet. 
Nehmen wir an, eine Kugel Eis kostet $0,80$ €. Nun können wir aufgrund dieser Information die Kosten für zwei, drei, vier usw. Kugeln ausrechnen.

Anzahl der KugelnKosten (in €)
00
10,80
21,60
32,40
43,20
54,00
64,80
75,60

Wir haben die Kosten im Verhältnis zur Anzahl der Kugeln in eine Tabelle eingetragen. Somit erhalten wir die dazugehörige Wertetabelle.

Dieses Verhältnis zwischen Kosten und Anzahl können wir nun in einer Funktion abbilden. Da die Kosten proportional ansteigen, erhalten wir eine lineare Funktion.

Zeichne die dazugehörige Funktion zuerst einmal selbst! Du kannst die Werte aus der Tabelle einfach ablesen und in ein passendes Koordinatensystem einzeichnen. 

Methode

Methode

Hier klicken zum Ausklappen

In der Wertetabelle stehen die x-Werte links und die dazugehörigen y-Werte rechts. Bei unserem Beispiel ordnen wir die Anzahl der Kugeln den Kosten zu. Somit muss die Anzahl der Kugeln dem $x-Wert$ entsprechen, denen ein $y$, der Preis, zugeordnet wird.

In einem Koordinatensystem verläuft immer von links nach rechts die $x-Achse$ und von unten nach oben die $y-Achse$.

Wir nehmen nun z.B. den Punkt $(2/1,6)$ und suchen zuerst die $2$ auf der x-Achse und ziehen gedanklich eine Linie nach oben und dann die $1,6$ auf der y-Achse und ziehen wieder eine gedanklich Linie nach rechts. Da wo sich die beiden "Gedankenlinien" treffen setzten wir den Punkt.

$P (x-Wert / y-Wert)$

Dies machen wir nun mit mehreren Punkten, verbinden diese und erhalten eine Funktion.

So sollte die Funktion aussehen:

funktion-eisverkauf
Die Abbildung zeigt eine lineare Funktion, die das Verhältnis zwischen der Anzahl der Kugeln und dem Preis darstellt.

Auf der $x$-Achse ist die Anzahl der Kugeln abgebildet und auf der $y$-Achse die Kosten. Die Funktion bildet das Verhältnis dazwischen ab.

Wir können sehen, dass die Funktion die Punkte der Wertetabelle miteinander verbindet und eine gerade Linie entsteht.

Lineare Funktionen: Besonderheiten der Variablen

$n$: Der y-Achsenabschnitt - der Schnittpunkt mit der y-Achse - liegt bei null, da keine Kugel Eis auch nichts kostet.

Allgemein zeigt der y-Achsenabschnitt das Verhältnis zwischen keinem $x$ und $y$.

$m$: Die Steigung ist positiv - je größer die $x$-Werte werden, desto größer werden die $y$-Werte. Natürlich, denn je mehr Kugeln gekauft werden, umso teurer wird es.

Die Steigung kann auch negativ sein. Dann ist $m$ ein negativer Wert.

$x$ und $y$: Die zwei Variablen sind hierbei die Anzahl der Kugeln und der Preis. Beide Variablen stehen im Verhältnis zueinander. Dabei ist $x$ die unabhängige Variabel, auch Funktionsargument genannt, und $y$ die abhängige Variable.

Lineare Funktionsgleichung bestimmen

Wir können die Funktionsgleichung, die das Verhältnis zwischen Kugeln Eis und Preis wiedergibt, bestimmen.
Dies hat den Vorteil, dass man sowohl für jede beliebe Anzahl an Kugeln den Preis ausrechnen kann, als auch für jeden beliebigen Preis die Anzahl der Kugeln ermitteln kann.
Dafür nehmen wir uns zwei beliebige Punkte, zum Beispiel $P(0/0)$ und $Q(1/0,8)$. Die Punkte setzen wir jetzt nacheinander in die "leere" lineare Gleichung $f(x) = m\cdot x +n$ ein.

1. $P(0/0)$ 
Dieser Punkt besagt, dass der y-Achsenabschnitt, also $n$, gleich null ist. Wie oben schon erwähnt, ist der Preis für keine Kugel auch $0 €$.
Mathematisch können wir den Punkt einfach einsetzen. Dann erhalten wir die Gleichung:
$0 = m \cdot 0 + n$
$0 = n$
Also fällt das $n$ aus der Gleichung weg.

2. $Q(1/0,8)$
Nun zum zweiten Punkt $Q(1/0,8)$. Sachlich gesehen hat dieser Punkt die Bedeutung, dass eine Kugel $0,80 €$ kostet. Daher muss die Steigung $0,8$ betragen.
Schauen wir uns dies mathematisch an, indem wir den Punkt in die Gleichung einsetzen.
$y = m \cdot x$
$0,8 = m \cdot 1$
$0,8 = m$
Somit haben wir nun auch mathematisch gezeigt, dass die Steigung $0,8$ beträgt.

Nun müssen wir die zwei errechneten Variablen noch in unsere Gleichung einsetzen.
Daraus folgt, dass unsere lineare Funktionsgleichung $f(x) = 0,8 \cdot x$ ist.

Nun kennst du die Definition und Anwendung linearer Funktionen und Funktionsgleichungen. Ob du diese Erklärungen verstanden hast, kannst du mit den Übungsaufgaben überprüfen. Viel Spaß dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welche Funktionen sind lineare Funktionen?

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Wie sieht die allgemeine Form einer linearen Funktion aus?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche festen Variablen gibt es bei einer linearen Funktion?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche besondere Eigenschaft hat der Graph einer linearen Funktion? Markiere die richtige Aussage!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Berrin A., vom

Meine Tochter ist zufrieden und kommt gerne

anonymisiert, vom

Alle super freundlich.

Kerstin B., vom

Die Kommunikation mit dem Studienkreis in Brühl zwischen Leitung, Eltern und Kind ist schnell, direkt und ausführlich erklärt. Mein Sohn hat nur positive Erfahrungen bis jetzt dort gemacht.

Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2021
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 Probestunden GRATIS & unverbindliche Beratung

In den Probestunden kann Ihr Kind uns testen und die Nachhilfe im Studienkreis kennenlernen.

In einem unverbindlichen Beratungsgespräch mit Ihnen, finden wir gemeinsam die optimale Förderung für Ihr Kind.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2 x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8560