Mathematik > Funktionen

Lineare Funktionen - Definition und Erklärung

Lineare Funktionen - Definition und Erklärung! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Funktionen sind ein wichtiger Bestandteil der Mathematik. Eine Art sind die linearen Funktionen (lineare Zuordnungen), diese Art von Funktionsgleichungen werden wir dir hier im Detail erklären.

Linearen Funktionen: Definition 

Eine Funktion stellt immer das Verhältnis zweier Variablen dar. Meist werden die zwei Variablen $x$ und $y$ genannt. Dieses Verhältnis kann dann durch eine Gleichung ausgedrückt und in einem Koordinatensystem eingezeichnet werden.
Lineare Funktionen beschreiben immer ein lineares Verhältnis, bzw. eine lineare Zuordnung zwischen zwei Variablen. Daher sind ihre Graphen eine gerade Linie im Koordinatensystem.

Mathematisch ausgedrückt geht es um folgenden Zusammenhang:

Merke

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m : Steigung}$
$\textcolor{blue}{n : y-Achsenabschnitt}$

$x :$ unabhängige Variable
$f(x) = y :$ abhängige Variable

beispiel-lineare-funnktion
Abbildung einer linearen Funktion mit y-Achsenabschnitt, Nullstelle und Steigungsdreieck
An diesem Beispiel können wir erstens den y-Achsenabschnitt, zweitens eine Nullstelle und drittens ein Steigungsdreieck erkennen.

Dabei sind alle Variablen, also $x$ und $y$ ( $y$ ist das Gleiche wie $f(x)$ ), $m$ und $n$, beliebige Zahlen. Je nach Besonderheit der Zahlen, sehen die Funktionen dann etwas anders aus. Es handelt sich jedoch immer um eine gerade Linie!

Schauen wir uns ein Beispiel an.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Lineare Funktionen: Beispielaufgabe

Kosten pro gekaufter Kugel Eis

Wir wollen eine Funktion erstellen, welche das Verhältnis zwischen der Anzahl gekaufter Kugeln Eis zum Preis abbildet. 
Nehmen wir an, eine Kugel Eis kostet $0,80$ €. Nun können wir aufgrund dieser Information die Kosten für zwei, drei, vier usw. Kugeln ausrechnen.

Anzahl der KugelnKosten (in €)
00
10,80
21,60
32,40
43,20
54,00
64,80
75,60

Wir haben die Kosten im Verhältnis zur Anzahl der Kugeln in eine Tabelle eingetragen. Somit erhalten wir die dazugehörige Wertetabelle.

Dieses Verhältnis zwischen Kosten und Anzahl können wir nun in einer Funktion abbilden. Da die Kosten proportional ansteigen, erhalten wir eine lineare Funktion.

Zeichne die dazugehörige Funktion zuerst einmal selbst! Du kannst die Werte aus der Tabelle einfach ablesen und in ein passendes Koordinatensystem einzeichnen. 

Methode

In der Wertetabelle stehen die x-Werte links und die dazugehörigen y-Werte rechts. Bei unserem Beispiel ordnen wir die Anzahl der Kugeln den Kosten zu. Somit muss die Anzahl der Kugeln dem $x-Wert$ entsprechen, denen ein $y$, der Preis, zugeordnet wird.

In einem Koordinatensystem verläuft immer von links nach rechts die $x-Achse$ und von unten nach oben die $y-Achse$.

Wir nehmen nun z.B. den Punkt $(2/1,6)$ und suchen zuerst die $2$ auf der x-Achse und ziehen gedanklich eine Linie nach oben und dann die $1,6$ auf der y-Achse und ziehen wieder eine gedanklich Linie nach rechts. Da wo sich die beiden "Gedankenlinien" treffen setzten wir den Punkt.

$P (x-Wert / y-Wert)$

Dies machen wir nun mit mehreren Punkten, verbinden diese und erhalten eine Funktion.

So sollte die Funktion aussehen:

funktion-eisverkauf
Die Abbildung zeigt eine lineare Funktion, die das Verhältnis zwischen der Anzahl der Kugeln und dem Preis darstellt.

Auf der $x$-Achse ist die Anzahl der Kugeln abgebildet und auf der $y$-Achse die Kosten. Die Funktion bildet das Verhältnis dazwischen ab.

Wir können sehen, dass die Funktion die Punkte der Wertetabelle miteinander verbindet und eine gerade Linie entsteht.

Lineare Funktionen: Besonderheiten der Variablen

$n$: Der y-Achsenabschnitt - der Schnittpunkt mit der y-Achse - liegt bei null, da keine Kugel Eis auch nichts kostet.

Allgemein zeigt der y-Achsenabschnitt das Verhältnis zwischen keinem $x$ und $y$.

$m$: Die Steigung ist positiv - je größer die $x$-Werte werden, desto größer werden die $y$-Werte. Natürlich, denn je mehr Kugeln gekauft werden, umso teurer wird es.

Die Steigung kann auch negativ sein. Dann ist $m$ ein negativer Wert.

$x$ und $y$: Die zwei Variablen sind hierbei die Anzahl der Kugeln und der Preis. Beide Variablen stehen im Verhältnis zueinander. Dabei ist $x$ die unabhängige Variabel, auch Funktionsargument genannt, und $y$ die abhängige Variable.

Lineare Funktionsgleichung bestimmen

Wir können die Funktionsgleichung, die das Verhältnis zwischen Kugeln Eis und Preis wiedergibt, bestimmen.
Dies hat den Vorteil, dass man sowohl für jede beliebe Anzahl an Kugeln den Preis ausrechnen kann, als auch für jeden beliebigen Preis die Anzahl der Kugeln ermitteln kann.
Dafür nehmen wir uns zwei beliebige Punkte, zum Beispiel $P(0/0)$ und $Q(1/0,8)$. Die Punkte setzen wir jetzt nacheinander in die "leere" lineare Gleichung $f(x) = m\cdot x +n$ ein.

1. $P(0/0)$ 
Dieser Punkt besagt, dass der y-Achsenabschnitt, also $n$, gleich null ist. Wie oben schon erwähnt, ist der Preis für keine Kugel auch $0 €$.
Mathematisch können wir den Punkt einfach einsetzen. Dann erhalten wir die Gleichung:
$0 = m \cdot 0 + n$
$0 = n$
Also fällt das $n$ aus der Gleichung weg.

2. $Q(1/0,8)$
Nun zum zweiten Punkt $Q(1/0,8)$. Sachlich gesehen hat dieser Punkt die Bedeutung, dass eine Kugel $0,80 €$ kostet. Daher muss die Steigung $0,8$ betragen.
Schauen wir uns dies mathematisch an, indem wir den Punkt in die Gleichung einsetzen.
$y = m \cdot x$
$0,8 = m \cdot 1$
$0,8 = m$
Somit haben wir nun auch mathematisch gezeigt, dass die Steigung $0,8$ beträgt.

Nun müssen wir die zwei errechneten Variablen noch in unsere Gleichung einsetzen.
Daraus folgt, dass unsere lineare Funktionsgleichung $f(x) = 0,8 \cdot x$ ist.

Nun kennst du die Definition und Anwendung linearer Funktionen und Funktionsgleichungen. Ob du diese Erklärungen verstanden hast, kannst du mit den Übungsaufgaben überprüfen. Viel Spaß dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welche Funktionen sind lineare Funktionen?

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Wie sieht die allgemeine Form einer linearen Funktion aus?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche festen Variablen gibt es bei einer linearen Funktion?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche besondere Eigenschaft hat der Graph einer linearen Funktion? Markiere die richtige Aussage!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

11.09.2023 , von Swetlana P.
Frau Becker geht auf Kunden ein. Sie ist sehr freundlich, die Lehrer sind professionell, nicht teuer.
11.09.2023 , von Eva B.
Sie haben mit viel Geduld ihn geholfen….
11.09.2023 , von Marioara N.
Note 1 wie in der Schule!
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8560