Suche
Kontakt
>
Mathematik > Funktionen

Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks

Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Wie kann man aus einem abgebildeten Graphen einer linearen Funktion die dazugehörige Funktionsgleichung bestimmen? Eine einfache Methode ist es, den y-Achsenabschnitt abzulesen und die Steigung mit Hilfe eines Steigungsdreiecks zu bestimmen. In diesem Lerntext werden wir die Steigung einer Funktion unter Zuhilfenahme eines Steigungsdreiecks bestimmen.

Gleichung einer linearen Funktion bestimmen

Der Graph einer linearen Funktion ist immer eine Gerade. Daher ist die Steigung in jedem Punkt des Graphen gleich. Um die Gleichung zu bestimmen zeichnet man ein Steigungsdreieck, um die Steigung $m$ zu bestimmen. Den y-Achsenabschnitt $n$ liest man dann im nächsten Schritt von der Abbildung ab. Nachdem man beide Variablen bestimmt hat, setzt man diese in die allgemeine Form ein und erhält die Funktionsgleichung.

Merke

allgemeine Form

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m : Steigung}$
$\textcolor{blue}{n : y-Achsenabschnitt}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Steigungsdreieck einzeichnen und berechnen

Methode

Vorgehensweise

1. Zwei beliebige Punkte auf dem Graphen aussuchen.
2. Punkte durch ein Dreieck verbinden. 
3. Den Höhen- und Längenunterschied ermitteln.
4. Die Steigung berechnen.
$\rightarrow Steigung = \frac{\textcolor{orange}{Höhenunterschied}}{\textcolor{blue}{Längenunterschied}} =  \frac{\textcolor{orange}{y_2 - y_1}}{\textcolor{blue}{x_2 - x_1}} $

Mit einem Steigungsdreieck können wir die Steigung jeder linearen Funktion ganz leicht bestimmen. Dafür müssen wir zwei Punkte auf der Geraden aussuchen.

1. Zwei beliebige Punkte aussuchen:

ablesen-2
Abbildung einer Funktion, bei der zwei Punkte ausgewählt wurden

Wir wählen zwei beliebige Punkte auf der Funktion aus. Am besten suchen wir Punkte mit ganzen Zahlen, damit keine Ablesefehler entstehen.

2. Die Punkte durch ein Dreieck verbinden:

Mit den zwei Punkten und dem Graphen wird ein Dreieck gebildet. Dabei entsteht ein Hilfspunkt (hier $C$), an dem ein rechter Winkel sein muss.

ablesen-3
Abbildung mit eingezeichnetem Steigungsdreieck

Nun haben wir unser Steigungsdreieck eingezeichnet und können den Höhen- und Längenunterschied ablesen.

3. Höhen- und Längenunterschied bestimmen:

Für den Längenunterschied muss die Differenz zwischen den beiden x-Werten errechnet werden. Um den Höhenunterschied zu ermitteln gehen wir genauso bei den y-Werten vor. Wir ziehen jeweils die Werte voneinander ab. Hier sind die Punkte $\textcolor{red}{A}$ und $\textcolor{blue}{B}$ gegeben. Wenn der Höhenunterschied mit $y_\textcolor{red}{A}-y_\textcolor{blue}{B}$ berechnet wird, dann muss der Längenunterschied mit $x_\textcolor{red}{A}-x_\textcolor{blue}{B}$ berechnet werden. $A$ und $B$ dürfen hier nicht vertauscht werden, da sonst ein Vorzeichenfehler entsteht.
Die Werte können wir einfach aus dem Koordinatensystem ablesen.

4. Steigung berechnen:

Um nun aus dem Höhen- und Längenunterschied die Steigung zu ermitteln, müssen wir diese teilen.

Merke

$Steigung = \frac{\textcolor{orange}{Höhenunterschied}}{\textcolor{blue}{Längenunterschied}} =  \frac{\textcolor{orange}{y_2 - y_1}}{\textcolor{blue}{x_2 - x_1}} $

Welche Steigung hat die oben abgebildete Funktion dann?

Vertiefung

Hier klicken zum Ausklappen
Lösung

Längenunterschied: Dafür lesen wir zuerst die beiden $x-Werte$ ab. Der größere liegt bei Punkt $B$ und beträgt $6$, der kleinere bei Punkt $A$ und hat den Wert $2$. Nun ziehen wir $2$ von $6$ ab und wissen, dass der Längenunterschied $4$ beträgt.

Den Längenunterschied haben wir schon berechnet, dabei haben wir den x-Wert von Punkt $B$ von Punkt $A$ abgezogen. Also ziehen wir den y-Wert von Punkt $B$ von Punkt $A$ ab, um den Höhenunterschied zu bestimmen. $7-1=6$

$Steigung = m = \frac{Höhenunterschied}{Längenunterschied} = \frac{y_2 - y_1}{x_2 - x_1} = \frac {7-1}{6-2} = \frac {6}{4} = \frac {3}{2} = 1,5$

Für das vollständige Bestimmen der Funktionsgleichung ist noch das Ablesen des y-Achsenabschnittes notwendig und das Eintragen beider Werte in die allgemeine Funktionsgleichung.

Mit den Übungsaufgaben kannst du überprüfen, ob du alles richtig verstanden hast. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie kann man die Steigung einer linearen Funktion bestimmen?

Teste dein Wissen!

steigungsdreieck-aufgabe-1



Drucke dir das Bild dieser Funktion aus und zeichne an den Graphen ein Steigungsdreieck!

Wie groß ist die Steigung der Funktion?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme mithilfe eines Steigungsdreieck die Steigung der Funktion.

steigungsdreick-1

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme die beiden Funktionsgleichungen!

schnittpunkt-1

Markiere die richtige Antwort.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

30.10.2024
Der Lehrer verwendet gute Beispiele für die Kids, um Eselsbrücken zu bauen. Und er nimmt sich viel Zeit für die Kids.
18.10.2024
es läuft optimal im Mathe LK
09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
Gratis Beratung (heute 7-22 Uhr)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7758