Mathematik > Funktionen

Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks

Inhaltsverzeichnis:

Wie kann man aus einem abgebildeten Graphen einer linearen Funktion die dazugehörige Funktionsgleichung bestimmen? Eine einfache Methode ist es, den y-Achsenabschnitt abzulesen und die Steigung mit Hilfe eines Steigungsdreiecks zu bestimmen. In diesem Lerntext werden wir die Steigung einer Funktion unter Zuhilfenahme eines Steigungsdreiecks bestimmen.

Gleichung einer linearen Funktion bestimmen

Der Graph einer linearen Funktion ist immer eine Gerade. Daher ist die Steigung in jedem Punkt des Graphen gleich. Um die Gleichung zu bestimmen zeichnet man ein Steigungsdreieck, um die Steigung $m$ zu bestimmen. Den y-Achsenabschnitt $n$ liest man dann im nächsten Schritt von der Abbildung ab. Nachdem man beide Variablen bestimmt hat, setzt man diese in die allgemeine Form ein und erhält die Funktionsgleichung.

Merke

Merke

Hier klicken zum Ausklappen

allgemeine Form

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m : Steigung}$
$\textcolor{blue}{n : y-Achsenabschnitt}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Steigungsdreieck einzeichnen und berechnen

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise

1. Zwei beliebige Punkte auf dem Graphen aussuchen.
2. Punkte durch ein Dreieck verbinden. 
3. Den Höhen- und Längenunterschied ermitteln.
4. Die Steigung berechnen.
$\rightarrow Steigung = \frac{\textcolor{orange}{Höhenunterschied}}{\textcolor{blue}{Längenunterschied}} =  \frac{\textcolor{orange}{y_2 - y_1}}{\textcolor{blue}{x_2 - x_1}} $

Mit einem Steigungsdreieck können wir die Steigung jeder linearen Funktion ganz leicht bestimmen. Dafür müssen wir zwei Punkte auf der Geraden aussuchen.

1. Zwei beliebige Punkte aussuchen:

ablesen-2
Abbildung einer Funktion, bei der zwei Punkte ausgewählt wurden

Wir wählen zwei beliebige Punkte auf der Funktion aus. Am besten suchen wir Punkte mit ganzen Zahlen, damit keine Ablesefehler entstehen.

2. Die Punkte durch ein Dreieck verbinden:

Mit den zwei Punkten und dem Graphen wird ein Dreieck gebildet. Dabei entsteht ein Hilfspunkt (hier $C$), an dem ein rechter Winkel sein muss.

ablesen-3
Abbildung mit eingezeichnetem Steigungsdreieck

Nun haben wir unser Steigungsdreieck eingezeichnet und können den Höhen- und Längenunterschied ablesen.

3. Höhen- und Längenunterschied bestimmen:

Für den Längenunterschied muss die Differenz zwischen den beiden x-Werten errechnet werden. Um den Höhenunterschied zu ermitteln gehen wir genauso bei den y-Werten vor. Wir ziehen jeweils die Werte voneinander ab. Hier sind die Punkte $\textcolor{red}{A}$ und $\textcolor{blue}{B}$ gegeben. Wenn der Höhenunterschied mit $y_\textcolor{red}{A}-y_\textcolor{blue}{B}$ berechnet wird, dann muss der Längenunterschied mit $x_\textcolor{red}{A}-x_\textcolor{blue}{B}$ berechnet werden. $A$ und $B$ dürfen hier nicht vertauscht werden, da sonst ein Vorzeichenfehler entsteht.
Die Werte können wir einfach aus dem Koordinatensystem ablesen.

4. Steigung berechnen:

Um nun aus dem Höhen- und Längenunterschied die Steigung zu ermitteln, müssen wir diese teilen.

Merke

Merke

Hier klicken zum Ausklappen

$Steigung = \frac{\textcolor{orange}{Höhenunterschied}}{\textcolor{blue}{Längenunterschied}} =  \frac{\textcolor{orange}{y_2 - y_1}}{\textcolor{blue}{x_2 - x_1}} $

Welche Steigung hat die oben abgebildete Funktion dann?

Vertiefung

Hier klicken zum Ausklappen
Lösung

Längenunterschied: Dafür lesen wir zuerst die beiden $x-Werte$ ab. Der größere liegt bei Punkt $B$ und beträgt $6$, der kleinere bei Punkt $A$ und hat den Wert $2$. Nun ziehen wir $2$ von $6$ ab und wissen, dass der Längenunterschied $4$ beträgt.

Den Längenunterschied haben wir schon berechnet, dabei haben wir den x-Wert von Punkt $B$ von Punkt $A$ abgezogen. Also ziehen wir den y-Wert von Punkt $B$ von Punkt $A$ ab, um den Höhenunterschied zu bestimmen. $7-1=6$

$Steigung = m = \frac{Höhenunterschied}{Längenunterschied} = \frac{y_2 - y_1}{x_2 - x_1} = \frac {7-1}{6-2} = \frac {6}{4} = \frac {3}{2} = 1,5$

Für das vollständige Bestimmen der Funktionsgleichung ist noch das Ablesen des y-Achsenabschnittes notwendig und das Eintragen beider Werte in die allgemeine Funktionsgleichung.

Mit den Übungsaufgaben kannst du überprüfen, ob du alles richtig verstanden hast. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie kann man die Steigung einer linearen Funktion bestimmen?

Teste dein Wissen!

steigungsdreieck-aufgabe-1



Drucke dir das Bild dieser Funktion aus und zeichne an den Graphen ein Steigungsdreieck!

Wie groß ist die Steigung der Funktion?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme mithilfe eines Steigungsdreieck die Steigung der Funktion.

steigungsdreick-1

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme die beiden Funktionsgleichungen!

schnittpunkt-1

Markiere die richtige Antwort.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7758