Kartesisches Koordinatensystem

Mathematik > Funktionen
Kartesisches Koordinatensystem! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Text erfährst du alles über das kartesische Koordinatensystem, seine Quadranten, woher der Name kommt, wie man es richtig zeichnet und die wichtigsten Begrifflichkeiten rund um das kartesische Koordinatensystem. Zudem gibt es noch ein paar Aufgaben zum Koordinatensystem, um dein Wissen zu festigen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Begriff des kartesischen Koordinatensystems und historischer Hintergrund

Der Begriff kartesisch lässt sich von seinem Erfinder ableiten. Der Franzose René Descartes hat es im 17. Jahrhundert entwickelt und seinen Namen dafür gegeben (kartesisch ist der lateinische Begriff für Descartes). 

Kartesisches Koordinatensystem: Definition und Eigenschaften

Merke

Laut Definition ist ein kartesisches Koordinatensystem ein orthogonales Koordinatensystem, dessen Koordinatenlinien in einem konstanten Abstand liegen.

kartesisches Koordinatensystem
kartesisches Koordinatensystem

In der Abbildung erkennst du ein kartesisches Koordinatensystem. Hierbei werden zwei Geraden gezeichnet, die orthogonal aufeinander liegen, also senkrecht aufeinander. Man gibt den beiden Geraden dann im Koordinatensystem die Namen x-Achse und y-Achse, wobei die x-Achse immer die waagerechte Achse des Systems darstellt und die y-Achse immer die senkrechte Achse des Koordinatensystems ist.

kartesisches Koordinatensystem
kartesisches Koordinatensystem mit $\textcolor{green}{x-Achse}$ und $\textcolor{brown}{y-Achse}$

Koordinatenursprung

Den beiden Achsen werden dann bestimmte Werte in bestimmten Abständen zugewiesen, also wird etwa für jeden $cm$ im Heft genau $1 cm$ im Koordinatensystem gegangen. Man kann auch größere oder kleinere Schritte gehen, je nachdem wie man es benötigt. So haben wir in der Abbildung etwa eine Schrittgröße von 5 für die x-Achse gewählt.

Alle Koordinatensysteme haben jedoch eins gemeinsam: den Koordinatenursprung. Dieser ist der Schnittpunkt der beiden Achsen und hat immer die Koordinaten (0|0).

Merke

Der Schnittpunkt der beiden Geraden wird der Koordinatenursprung genannt und hat den Wert (0|0).

Die x-Achse wird die waagerechte Gerade genannt, y-Achse die senkrechte Gerade.

Kartesisches Koordinatensystem
Koordinatenursprung und Sektoren

Quadranten im Koordinatensystem

Wie wir in der Abbildung erkennen, werden die einzelnen Bereiche in einem Koordinatensystem auch mit einem bestimmten Namen versehen. Wir nennen den rechten oberen Bereich Sektor 1, 1. Sektor oder 1. Quadrant. Der 2. Sektor bzw. 2. Quadrant ist dann der links daneben, der dritte der darunter und der vierte der letzte verbleibende Bereich. So hat jeder Bereich seinen bestimmten Namen. Die Sektoren bzw. Quadranten im Koordinatensystem erleichtern das Eintragen und Ablesen von Punkten.

Merke

Die einzelnen Bereiche des Koordinatensystems werden Quadranten/Sektoren genannt. Hierbei wird rechts oben angefangen mit Quadrant 1 und gegen den Uhrzeigersinn gezählt bis man zu Quadrant 4 angekommen ist.

Gut zu wissen

Manchmal wirst du bei Koordinatensystemen statt des Begriffs Quadrant, auch den Begriff Sektor finden. Dieser ist ebenfalls richtig, Quadrant ist nur der lateinischen Sprache entnommen. Es bedeutet so viel wie Viertel. Du kannst also beide Begriffe verwenden.

Kartesisches Koordinatensystem: Punkte ablesen und eintragen

Wie liest man also Punkte in einem Koordinatensystem ab oder trägt diese ein?

Nehmen wir als Beispiel den Punkt P(2|3). Wir haben zwei Koordinaten gegeben, einmal die $\textcolor{blue}{2}$ und einmal die $\textcolor{green}{3}$. Der erste der beiden Werte ist der $\textcolor{blue}{x-Wert}$, also ist der andere der $\textcolor{green}{y-Wert}$. Wenn wir also das Koordinatensystem vor uns haben gehen wir erst die Schritte auf der x-Achse, hier genau 2. Die Schritte gehen wir in Richtung des 1.Sektors, weil die Zahl 2 positiv ist. Wenn sie negativ wäre, müsste man Richtung Sektor 2 gehen.

Jetzt gehen wir nur noch die Schritte in die richtige Richtung für den y-Wert. Hier also 3 Schritte, die wir nach oben gehen, da die y-Achse nach oben hin die positiven Werte hat. In einer Abbildung sieht das dann so aus:

Einen Punkt einzeichnen in ein Koordinatensystem
Den Punkt P(2|3) einzeichnen in ein Koordinatensystem

Die blaue und die grüne Linie sind natürlich nur Hilfslinien, die du nicht einzeichnen musst, wenn du den Punkt in dein Koordinatensystem einträgst. 

Wenn du einen Punkt ablesen willst, gehst du fast genauso vor. Du schaust erst nach der x-Achse und gehst die Schritte, bis du unter dem Punkt gelandet bist (oder über dem Punkt wenn der y-Wert negativ ist). Dann gehst du die Schritte zum Punkt. Wenn du dir beide Werte gemerkt hast, dann hast du jetzt die Koordinaten des Punktes herausgefunden.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen zum kartesischen Koordinatensystem!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie bezeichnet man die Bereiche in einem Koordinatensystem?

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Welche Eigenschaften stimmen?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was bedeuten die Koordinaten bei einem Punkt?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist das Besondere am kartesischen Koordinatensystem?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8557