Mathematik > Funktionen

Kartesisches Koordinatensystem

Inhaltsverzeichnis:

In diesem Text erfährst du alles über das kartesische Koordinatensystem, seine Quadranten, woher der Name kommt, wie man es richtig zeichnet und die wichtigsten Begrifflichkeiten rund um das kartesische Koordinatensystem. Zudem gibt es noch ein paar Aufgaben zum Koordinatensystem, um dein Wissen zu festigen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Begriff des kartesischen Koordinatensystems und historischer Hintergrund

Der Begriff kartesisch lässt sich von seinem Erfinder ableiten. Der Franzose René Descartes hat es im 17. Jahrhundert entwickelt und seinen Namen dafür gegeben (kartesisch ist der lateinische Begriff für Descartes). 

Kartesisches Koordinatensystem: Definition und Eigenschaften

Merke

Merke

Hier klicken zum Ausklappen

Laut Definition ist ein kartesisches Koordinatensystem ein orthogonales Koordinatensystem, dessen Koordinatenlinien in einem konstanten Abstand liegen.

kartesisches Koordinatensystem
kartesisches Koordinatensystem

In der Abbildung erkennst du ein kartesisches Koordinatensystem. Hierbei werden zwei Geraden gezeichnet, die orthogonal aufeinander liegen, also senkrecht aufeinander. Man gibt den beiden Geraden dann im Koordinatensystem die Namen x-Achse und y-Achse, wobei die x-Achse immer die waagerechte Achse des Systems darstellt und die y-Achse immer die senkrechte Achse des Koordinatensystems ist.

kartesisches Koordinatensystem
kartesisches Koordinatensystem mit $\textcolor{green}{x-Achse}$ und $\textcolor{brown}{y-Achse}$

Koordinatenursprung

Den beiden Achsen werden dann bestimmte Werte in bestimmten Abständen zugewiesen, also wird etwa für jeden $cm$ im Heft genau $1 cm$ im Koordinatensystem gegangen. Man kann auch größere oder kleinere Schritte gehen, je nachdem wie man es benötigt. So haben wir in der Abbildung etwa eine Schrittgröße von 5 für die x-Achse gewählt.

Alle Koordinatensysteme haben jedoch eins gemeinsam: den Koordinatenursprung. Dieser ist der Schnittpunkt der beiden Achsen und hat immer die Koordinaten (0|0).

Merke

Merke

Hier klicken zum Ausklappen

Der Schnittpunkt der beiden Geraden wird der Koordinatenursprung genannt und hat den Wert (0|0).

Die x-Achse wird die waagerechte Gerade genannt, y-Achse die senkrechte Gerade.

Kartesisches Koordinatensystem
Koordinatenursprung und Sektoren

Quadranten im Koordinatensystem

Wie wir in der Abbildung erkennen, werden die einzelnen Bereiche in einem Koordinatensystem auch mit einem bestimmten Namen versehen. Wir nennen den rechten oberen Bereich Sektor 1, 1. Sektor oder 1. Quadrant. Der 2. Sektor bzw. 2. Quadrant ist dann der links daneben, der dritte der darunter und der vierte der letzte verbleibende Bereich. So hat jeder Bereich seinen bestimmten Namen. Die Sektoren bzw. Quadranten im Koordinatensystem erleichtern das Eintragen und Ablesen von Punkten.

Merke

Merke

Hier klicken zum Ausklappen

Die einzelnen Bereiche des Koordinatensystems werden Quadranten/Sektoren genannt. Hierbei wird rechts oben angefangen mit Quadrant 1 und gegen den Uhrzeigersinn gezählt bis man zu Quadrant 4 angekommen ist.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Manchmal wirst du bei Koordinatensystemen statt des Begriffs Quadrant, auch den Begriff Sektor finden. Dieser ist ebenfalls richtig, Quadrant ist nur der lateinischen Sprache entnommen. Es bedeutet so viel wie Viertel. Du kannst also beide Begriffe verwenden.

Kartesisches Koordinatensystem: Punkte ablesen und eintragen

Wie liest man also Punkte in einem Koordinatensystem ab oder trägt diese ein?

Nehmen wir als Beispiel den Punkt P(2|3). Wir haben zwei Koordinaten gegeben, einmal die $\textcolor{blue}{2}$ und einmal die $\textcolor{green}{3}$. Der erste der beiden Werte ist der $\textcolor{blue}{x-Wert}$, also ist der andere der $\textcolor{green}{y-Wert}$. Wenn wir also das Koordinatensystem vor uns haben gehen wir erst die Schritte auf der x-Achse, hier genau 2. Die Schritte gehen wir in Richtung des 1.Sektors, weil die Zahl 2 positiv ist. Wenn sie negativ wäre, müsste man Richtung Sektor 2 gehen.

Jetzt gehen wir nur noch die Schritte in die richtige Richtung für den y-Wert. Hier also 3 Schritte, die wir nach oben gehen, da die y-Achse nach oben hin die positiven Werte hat. In einer Abbildung sieht das dann so aus:

Einen Punkt einzeichnen in ein Koordinatensystem
Den Punkt P(2|3) einzeichnen in ein Koordinatensystem

Die blaue und die grüne Linie sind natürlich nur Hilfslinien, die du nicht einzeichnen musst, wenn du den Punkt in dein Koordinatensystem einträgst. 

Wenn du einen Punkt ablesen willst, gehst du fast genauso vor. Du schaust erst nach der x-Achse und gehst die Schritte, bis du unter dem Punkt gelandet bist (oder über dem Punkt wenn der y-Wert negativ ist). Dann gehst du die Schritte zum Punkt. Wenn du dir beide Werte gemerkt hast, dann hast du jetzt die Koordinaten des Punktes herausgefunden.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen zum kartesischen Koordinatensystem!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie bezeichnet man die Bereiche in einem Koordinatensystem?

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Welche Eigenschaften stimmen?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was bedeuten die Koordinaten bei einem Punkt?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist das Besondere am kartesischen Koordinatensystem?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
anonymisiert, vom 2020-01-11
Sehr guter Service und sehr guter Lehrer
anonymisiert, vom 2020-01-10
Exzellente persönliche Betreuung. Es wird sich Zeit genommen für individuelle Probleme und diese werden kompetent gelöst. Das Lehrpersonal ist sehr erfahren und passt sich den jeweiligen Umständen sehr gut an. Ich kann den Studienkreis Wolfenbüttel uneingeschränkt weiterempfehlen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8557