Mathematik > Funktionen

Schnittwinkel zweier linearer Funktionen berechnen

Schnittwinkel zweier linearer Funktionen berechnen! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Lineare Funktionen, die sich schneiden, bilden einen sogenannten Schnittwinkel. Wo genau sich dieser Winkel befindet und wie man ihn berechnet, erfährst du in diesem Text.

Schnittwinkel entstehen, wenn sich lineare Funktionen schneiden. Besitzen zwei lineare Funktionen dieselbe Steigung, können sie sich nicht schneiden und dementsprechend gibt es auch keinen Schnittwinkel. Voraussetzung, um einen Schnittwinkel berechnen zu können, ist also, dass die linearen Funktionen unterschiedliche Steigungen haben.

$f(x) = \textcolor{red}{3} \cdot x -5$

$g(x) = \textcolor{red}{3} \cdot x + 7$

$\rightarrow \textcolor{red}{KEIN~SCHNITTWINKEL}$

$f(x) = \textcolor{green}{3} \cdot x -5$

$g(x) = \textcolor{green}{5} \cdot x + 7$

$\rightarrow \textcolor{green}{SCHNITTWINKEL}$

Was ist der Schnittwinkel?

Schneiden sich zwei lineare Funktionen, ergeben sich insgesamt vier verschiedene Winkel. Die gegenüberliegenden Winkel sind jeweils gleich groß, weshalb wir nur zwei unterschiedliche Bezeichnungen benötigen: $\alpha$ und $\beta$.

Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen

In den meisten Fällen bezeichnet man den kleineren Winkel $\alpha$ als den Schnittwinkel. Der Winkel $\beta$ wird Nebenschnittwinkel genannt.

Wie du in der Abbildung erkennen kannst, besteht eine mathematische Beziehung zwischen $\alpha$ und $\beta$.

$\alpha + \beta = 180°$

Ist der Winkel $\beta$ gegeben, kannst du den Schnittwinkel ganz einfach berechnen:

$\alpha = 180° - \beta$

Hast du die Größe des Winkels $ \beta$ nicht gegeben, musst du den Schnittwinkel mithilfe der Funktionsgleichungen berechnen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Schnittwinkel mithilfe der Funktionsgleichung berechnen

Um den Schnittwinkel aus zwei gegebenen Funktionsgleichungen zu bestimmen, musst du folgende Formel anwenden:

Merke

Merke

Hier klicken zum Ausklappen

Berechnung des Schnittwinkels

$\large{tan~\alpha = |\frac{m_1 - m_2}{1 + m_1 \cdot m_2}|}$

Dabei entspricht $m_1$ der Steigung der einen Funktion, $m_2$ der Steigung der anderen Funktion und $tan$ dem Tangens.

Die Striche um den Bruch sind die sogenannten Betragsstriche. Den Betrag einer Zahl erhältst du, indem du das Vorzeichen weglässt:

$|+3| = 3$

$|-3| = 3$

Durch das Einsetzen der beiden Steigungen erhalten wir $tan~\alpha$. Da wir aber den Schnittwinkel $ \alpha$ und nicht den Tangens von $ \alpha$ berechnen möchten, müssen wir die Formel noch ein wenig umstellen:

$\large{tan~\alpha = |\frac{m_1 - m_2}{1 + m_1 \cdot m_2}|}$

$\large{\alpha = arctan~(|\frac{m_1 - m_2}{1 + m_1 \cdot m_2}|)}$

$arctan$ bedeutet Arcustangens und steht für die Umkehrfunktion des Tangens. Diese kannst du ganz einfach mithilfe deines Taschenrechners ausrechnen. Benutze dazu die Taste $tan^{-1}$.

Beispielaufgabe: Berechnung des Schnittwinkels

Gegeben sind diese beiden Funktionen:

$f(x) = 0,25 \cdot x + 5 \rightarrow m_1 = 0,25$

$g(x) = 2 \cdot x - 8 \rightarrow m_2 = 2$

Nun setzen wir die Steigungen in die Formel zur Berechnung des Schnittwickels ein:

$\large{tan~\alpha = |\frac{m_1 - m_2}{1 + m_1 \cdot m_2}| \Leftrightarrow tan~\alpha = |\frac{0,25 - 2}{1 + 0,25 \cdot 2}|} \Leftrightarrow tan~\alpha = |-1,167|$

$tan~\alpha = 1,167$

$\alpha = arctan (1,167)$

$\alpha \approx 49,4°$

Teste dein neu erlerntes Wissen in unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie groß ist der Schnittwinkel $\alpha$ dieser beiden Funktionen?

$f(x)=-0,5 \cdot x + 7$

$g(x)=0,5 \cdot x - 2$

Teste dein Wissen!

Welche dieser linearen Funktionen besitzen einen Schnittwinkel?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche mathematische Beziehung besteht zwischen den Schnittwinkeln $\alpha$ und $\beta$?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Der (Neben-) Schnittwinkel $\beta$ einer Funktion beträgt $126°$. Wie groß ist demnach der Schnittwinkel $\alpha$?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

15.05.2023 , von Rainer W.
Ich find die Nachhilfe bisher sehr gut. Mein Lehrer kann mir meine Fragen sehr gut erklären
15.05.2023 , von Giovanna B.
Kurzfristige Terminänderungen sind möglich. Feedback und Kommunikation stimmen.
15.05.2023 , von Daniela M.
Meine Tochter besucht die Nachhilfe gern, wird immer wieder neu motiviert und versteht den Unterrichtsstoff (Mathe) inzwischen viel besser. Wir sind sehr zufrieden!
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7760