Mathematik > Funktionen

Schnittpunkt zweier linearer Funktionen berechnen

Schnittpunkt zweier linearer Funktionen berechnen! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Wenn wir mehrere Funktionen in ein Koordinatensystem eintragen, können wir feststellen, dass sich diese manchmal in einem Punkt schneiden. Im folgenden Kapitel wollen wir uns den Schnittpunkt von zwei linearen Funktionen anschauen und die Methode, wie du diesen berechnen kannst, erklären.

Zwei sich schneidende Funktionen

Wenn wir zwei verschiedene Funktionen in ein Koordinatensystem eintragen, dann ist es möglich, dass sich diese schneiden. Wir sehen das in den folgenden Abbildungen:

schnittpunkte-2a
Zwei Abbildungen zweier linearer Funktionen, die sich schneiden

In der rechten Abbildung können wir den Schnittpunkt direkt ablesen. Er liegt bei $S(1/1)$.
Den Schnittpunkt im linken Bild können wir jedoch durch Ablesen nicht genau bestimmen. Wir müssen ihn daher rechnerisch ermitteln. Zur Berechnung eines Schnittpunktes zweier linearer Funktionen gibt es eine genaue Methode:

Methode

Schnittpunkt zweier linearer Funktionen berechnen

  1. Funktionsgleichungen gleichsetzen
  2. x-Wert ermitteln
  3. y-Wert des Schnittpunkts durch Einsetzen ermitteln
  4. Probe

Im ersten Schritt der Methode setzen wir die beiden Funktionen gleich. Das machen wir, weil sich die Funktionen den Schnittpunkt teilen, er liegt auf beiden Funktionen. Die x und y-Werte beider Funktionen sind an dieser Stelle also gleich.

Im zweiten Schritt lösen wir dann nach x auf und schreiben alle x-Werte auf eine, alle Zahlenwerte auf die andere Seite des Gleichheitszeichens. Der berechnete x-Wert wird dann in eine der Funktionen eingesetzt, um die y-Koordinate zu erhalten.

Der vierte Schritt ist die Probe, bei der wir die x- und y-Koordinate in beide Funktionen einsetzen und die beiden Werte auf ihre Richtigkeit prüfen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispielaufgabe: Schnittpunkt zweier Geraden bestimmen

Die beiden Funktionen $\textcolor{green}{ f(x) = 2\cdot x + 3}$ und $\textcolor{red}{g (x) = 0,5\cdot x + 5}$ sind gegeben und ihr Schnittpunkt soll bestimmt werden.

schnittpunkt-1
Abbildung zwei lineare Funktionen mit Schnittpunkt

1. Funktionsgleichungen gleichsetzen:

$\textcolor{green}{ f(x) = 2\cdot x + 3}$
$\textcolor{red}{ g(x) = 0,5\cdot x + 5}$

$ \textcolor{green}{2\cdot x + 3} = \textcolor{red}{0,5\cdot x + 5}$

Wir setzen die beiden Gleichungen gleich, da wir den Punkt herausfinden möchten, den beide Funktionen miteinander gemeinsam haben.

2. X-Wert ermitteln:

Wir rechnen mit den gleichgesetzten Gleichungen weiter und formen die Gleichung so um, dass $x$ nur auf einer Seite steht.
$ 2\cdot x + 3 = 0,5\cdot x + 5$                                    $|-0,5\cdot x$
$ 2\cdot x -0,5\cdot x + 3 = 0,5\cdot x-0,5\cdot x + 5$ 
$ 1,5\cdot x + 3 = 5$

Alle x-Werte stehen jetzt auf der linken Seite des Gleichheitszeichens. Die Zahlenwerte auf der linken Seite müssen jetzt noch auf die rechte Seite des Gleichheitszeichens gebracht werden. Es ergibt sich:


$ 1,5\cdot x + 3 = 5$       $|-3$
$ 1,5\cdot x  = 2$

Da wir aber nicht 1,5 von $x$ suchen, sondern nur ein $x$, müssen wir die Gleichung noch durch $1,5$ teilen, um auf den gesuchten x-Wert zu kommen:


$ 1,5\cdot x = 2$               $|:1,5$
$x = \frac {2}{1,5} = \frac {4}{3} \approx 1,33$

3. Y-Wert des Schnittpunkts durch Einsetzen ermitteln:
Den x-Wert des Schnittpunkts haben wir schon berechnet. Um den dazugehörigen y-Wert auszurechnen, müssen wir den x-Wert einfach in eine der beiden Funktionsgleichungen einsetzen:

$\textcolor{green}{ f(x) = 2\cdot x + 3} $
$f(\frac{4}{3}) = 2\cdot \frac {4}{3} + 3 = \frac {17}{3}$

$\rightarrow S(\frac{4}{3}/\frac{17}{3})$

Wichtig ist dabei, dass wir mit den genauen Zahlen, also den Brüchen rechnen, um Rundungsfehler zu vermeiden.

4. Probe:
Wir können ganz leicht überprüfen, ob wir uns an einer Stelle verrechnet haben.
Dafür setzen wir den x-Wert in die andere Gleichung ein und überprüfen, ob wir den gleichen y-Wert erhalten.

$\textcolor{red}{ g (x) = 0,5\cdot x + 5}$
$g (\frac{4}{3}) = 0,5 \cdot \frac{4}{3} + 5 = \frac{17}{3} \approx 5,67$

Mit den Übungsaufgaben kannst du überprüfen, ob du die Vorgehensweise richtig verstanden hast. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welchen Schnittpunkt haben die beiden abgebildeten Funktionen?

schnittpunkte-aufgabe-2



Teste dein Wissen!

Welchen Schnittpunkt haben die beiden Funktionen?

$f(x) = 2\cdot x +3$
$g(x) = 0,5 \cdot x +3$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne den Schnittpunkt der beiden Funktionen!

$f(x) = - 4\cdot x + 10$
$g(x) = 2\cdot x -2$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Schritte müssen beachten werden, um den Schnittpunkt zweier linearer Funktionen zu bestimmen?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

11.09.2023 , von Swetlana P.
Frau Becker geht auf Kunden ein. Sie ist sehr freundlich, die Lehrer sind professionell, nicht teuer.
11.09.2023 , von Eva B.
Sie haben mit viel Geduld ihn geholfen….
11.09.2023 , von Marioara N.
Note 1 wie in der Schule!
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8562