Suche
Kontakt
>
Mathematik > Funktionen

Lineare Funktion bestimmen mithilfe von zwei Punkten

Lineare Funktion bestimmen mithilfe von zwei Punkten! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Vorgehensweise zum Bestimmen einer linearen Funktionsgleichung mit zwei Punkten

In diesem Lerntext erklären wir dir, wie du aus zwei Punkten eine lineare Funktionsgleichung bestimmst. 

Gut zu wissen

Vorgehensweise

1. Die zwei gegebenen Punkte in die allgemeine Form einsetzen.
2. Die beiden Gleichungen untereinanderschreiben.
3. Das Gleichungssystem lösen, sodass wir den Wert der ersten Variable erhalten.
4. Den Wert der Variable in eine der zwei Gleichungen einsetzen und ausrechnen.
5. Den y-Achsenabschnitt und die Steigung in die allgemeine Form einsetzen.   $\rightarrow$ Wir erhalten die gefragte Funktionsgleichung.
6. Mache eine Probe!

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispielaufgabe zum Bestimmen einer linearen Funktionsgleichung mit zwei Punkten

Wir haben die Punkte $P$ und $Q$ gegeben: $P(-2/6)$   $Q(2/0)$.
Um mit ihnen die Funktionsgleichung zu bestimmen, setzen wir die beiden Punkte jeweils in die allgemeine Form $f(x) = m \cdot x +n$ ein.

1. Die Punkte in die allgemeine Form einsetzen:

$P(-2/6)$
$f(-2) = y = m \cdot (-2) +n = 6$

$Q(2/0)$
$f(2) = y = m \cdot 2 +n = 0$

2. Die beiden Gleichungen untereinander schreiben:

$ (-2)\cdot m +n = 6$
$~~~~~~ 2\cdot m +n = 0$

Wir suchen die beiden Variablen $n$ und $m$ und haben zwei Gleichungen gegeben. Daraus folgt, dass wir beide Variablen bestimmen können.
Um das Gleichungssystem zu lösen, müssen wir die beiden Gleichungen miteinander verrechnen. Wenn du dir nicht mehr sicher bist, wie Gleichungssysteme gelöst werden, schaue noch einmal nach, wie man Gleichungssysteme löst.

3. Das Gleichungssystem lösen.

Das Ziel beim Lösen der Gleichungssysteme sollte sein, dass eine der beiden Variablen wegfällt und so nur noch eine übrig bleibt. Diese können wir dann bestimmen. Wir verwenden bei unserem Beispiel das Additionsverfahren zum Lösen von Gleichungssystemen.

$ ~~~~-2\cdot m +n = 6$
$+~~~~~~2\cdot m +n = 0$
$\overline{~~~~~~~~~~~~~~~~~~2\cdot n=6~}$

Wir erhalten eine Gleichung mit einer Variablen, hier $n$. Dies kann nun gelöst werden.


$2\cdot n=6$     $|:2$
$\textcolor{blue}{n = 3}$

Wir haben den Wert für den y-Achsenabschnitt $n$ berechnet.

4. Den Wert der Variable in eine der beiden Gleichungen einsetzen:

Wie können wir die Steigung berechnen? Dafür muss $\textcolor{blue}{n = 3}\;$ in eine der beiden Gleichungen eingesetzt werden. Wir verwenden hier die zweite Gleichung:

$ 2\cdot m +\textcolor{blue}{n} = 0$
$ 2\cdot m + \textcolor{blue}{3}= 0$     $|-3$
$2\cdot m = 0-3$     $|:2$
$m = \frac{- 3}{2} $
$\textcolor{green}{m=- 1,5}$

Also beträgt die Steigung $- 1,5$.

5. Die beiden Variablen in die allgemeine Form einsetzen:

Wir haben beide Variablen $m$ und $n$ ermittelt und müssen diese jetzt nur noch in die allgemeine Form einsetzen, um die Gleichung zu erhalten, die durch beide Punkte verläuft:

$f(x) = m \cdot x +n$
$f(x) = \textcolor{green}{- 1,5} \cdot x + \textcolor{blue}{3}$

6. Probe:

Es ist nicht immer erforderlich eine Probe zu machen, jedoch gibt sie dir die Sicherheit, dass die von dir errechneten Werte der Richtigkeit entsprechen. Um eine Probe durchzuführen gibt es verschiedene Wege. In der folgenden Methode zeichnest du eine Abbildung der Gleichung mithilfe der beiden gegebenen Punkte. Aus dem entstehenden Funktionsgraphen kannst du dann die Steigung und den y-Achsenabschnitt ablesen, welche beide den ermittelten Werten aus deiner Rechnung entsprechen sollten.

ablesen-5a
Graph der Funktion

Die beiden Punkte $P$ und $Q$ wurden im Koordinatensystem eingetragen und durch eine Gerade verbunden.

Der Graph der Funktion schneidet die y-Achse im Punkt $R(0/3)$. $\rightarrow n=3$
Auch die Steigung können wir überprüfen. Wenn wir eine Einheit in x-Richtung nach rechts gehen, müssen wir 1,5 Einheiten nach unten. $ \rightarrow m=-1,5$

Überprüfe mit den Übungsaufgaben, ob du eine Funktionsgleichung aus zwei Punkten bestimmen kannst. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Bestimme mithilfe der Punkte $C(3/38)$ und $D(-1/34)$ die Funktionsgleichung!

Teste dein Wissen!

Welche Funktionsgleichung ergibt sich aus den Punkten $A(4/0)$ und $B(0/-2)$?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Die Punkte $P(-0,5/3)$ und $Q(-2,5/-3)$ sind gegeben. Bestimme rechnerisch die dazugehörige lineare Funktionsgleichung und markiere die richtige Lösung!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme mit den Punkten $E(3/40)$ und $F(2,2/20)$ die Funktionsgleichung. Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

17.06.2024 , von Tilo R.
Wenn es der kleinen Spaß macht zu lernen gibt es nicht besseres
12.06.2024 , von Kacper B.
Sowohl unsere Tochter als auch wir sind mit der initialen Beratung und Nachhilfe sehr zufrieden.
11.06.2024 , von Nadine D.
Unsere Tochter hat ihre Note innerhalb eines halben Jahres um zwei Noten verbessert. Nun können wir flexibel ein weiteres Fach dazu wählen. Das Ergebnis passt und die Flexibilität sorgt dafür, dass der Vertrag über zwei Jahre optimal genutzt werden kann. Absolute Weiterempfehlung!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7757