y-Achsenabschnitt/Ordinatenabschnitt berechnen

Mathematik > Funktionen
y-Achsenabschnitt/Ordinatenabschnitt berechnen! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Wie kann man aus einem abgebildeten Graphen einer linearen Funktion die dazugehörige Gleichung bestimmen? Die einfachste Möglichkeit ist, sich den Graphen genau anzuschauen, den y-Achsenabschnitt abzulesen und mit einem Steigungsdreieck die Steigung zu bestimmen. In diesem Text schauen wir uns an, wie der y-Achsenabschnitt/Ordinatenabschnitt bestimmt werden kann.

Geradengleichung berechnen

Der Graph einer linearen Funktion ist immer eine Gerade. Daher ist die Steigung in jedem Punkt des Graphen gleich.

Die Funktion eines Graphen soll nun mit Hilfe der Abbildung des Graphen bestimmt werden.
Um die Geradengleichung berechnen zu können, liest man den y-Achsenabschnitt ($n$) ab und macht ein Steigungsdreieck, um die Steigung ($m$) zu bestimmen. Wenn man die beiden Variablen, also $n$ und $m$, ermittelt hat, muss man sie in die allgemeine Form einsetzen und erhält die Funktionsgleichung.

Merke

allgemeine Form

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m : Steigung}$
$\textcolor{blue}{n : y-Achsenabschnitt}$

Wie die Steigung mit einem Steigungsdreieck bestimmt wird, kannst du dir im Kapitel Steigung einer linearen Funktion noch einmal anschauen.

y-Achsenabschnitt ablesen

Um den y-Achsenabschnitt, also den Ordinatenabschnitt, berechnen zu können, müssen wir den Schnittpunkt des Graphen mit der y-Achse herausfinden. 
Welchen Wert hat $x$, wenn der Graph die y-Achse schneidet? Versuche es bei dieser Abbildung herauszufinden:

ablesen-4
Abbildung einer linearen Funktion

Der y-Achsenabschnitt beträgt $1,5$. Der dazugehörige x-Wert ist $0$.

Die Funktion schneidet die y-Achse an dem Punkt, wo der x-Wert null ist. Vorsicht! Die beiden Achsen dürfen nicht verwechselt werden: Die x-Achse verläuft von links nach rechts und die y-Achse von unten nach oben.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Beispielaufgabe: Bestimmen der Funktionsgleichung mit dem y-Achsenabschnitt

Beispiel

Die Funktionsgleichung dieses Graphen soll bestimmt werden.

 

ablesen-1b

Dieser Funktion können wir sofort ansehen, dass der y-Achsenabschnitt $4$ beträgt, da die Funktion die y-Achse an dieser Stelle schneidet.
Auch die Steigung können wir durch bloßes Hinschauen herausfinden. Wenn wir eine Einheit $x$ nach rechts gehen, müssen wir eine Einheit in y-Richtung nach oben gehen.

$m= \frac{Höhenunterschied}{Längenunterschied} = \frac{\Delta y}{\Delta x}= \frac{1}{1} = 1 $. 
Damit beträgt die Steigung $1$.

Wir müssen die vollständige Funktionsgleichung bestimmen. Dafür setzen wir die beiden ermittelten Werte in die Gleichung ein.

$m=1$
$n=4$

$f(x) = m\cdot x+n$
$f(x) = 1\cdot x+4$ 

y-Achsenabschnitt mit der Steigung bestimmen

Es kann sein, dass eine Abbildung eines Graphen gegeben ist, bei dem der Schnittpunkt mit der y-Achse nicht sichtbar ist. Wie beispielsweise bei dieser Abbildung:

ablesen-2
Abbildung einer linearen Funktion

Dieser Graph ist gegeben und der y-Achsenabschnitt soll ermittelt werden. Um die komplette Gleichung bestimmen zu können, fehlt der y-Achsenabschnitt. Dieser ist in unserem Graph nicht eingezeichnet, kann also nicht einfach abgelesen werden.

Um den Ordinatenabschnitt berechnen zu können, nutzen wir die Formel zur Berechnung der Steigung. Die Steigung errechnen wir als erstes. Sie beträgt $m=1,5$. Doch mit dieser Formel können wir jetzt auch den y-Achsenabschnitt ermitteln. Hierfür setzen wir die Koordinaten eines uns bekannten Punktes und die Steigung der Funktion in die folgende Formel ein:

$m = \frac{y2-y1}{x2-x1}$

Wir setzen die Steigung $m=1,5$ und die Koordinaten des Punktes $A\; (2|1)$ ein. Die rote $\textcolor{BrickRed}{0}$ ist die x-Koordinate des y-Achsenabschnittes. Alles in die Formel eingesetzt ergibt sich:

$1,5 = \frac{y2-1}{\textcolor{BrickRed}{0}-2}$

Jetzt müssen wir die Formel nur noch nach $y2$ umstellen und wir haben den y-Achsenabschnitt. Der erste Schritt ist also die Multiplikation mit $-2$. Es folgt:

$1,5 \cdot (-2)= y2-1$

Im nächsten Schritt addieren wir $1$, um den Wert $y2$ allein auf einer Seite zu haben. Es ergibt sich:

$-3+1=y2 \rightarrow y2=-2$

Der y-Achsenabschnitt der Funktion beträgt also $-2$.

Nun hast du erfahren, wie du den y-Achsenabschnitt einer linearen Funktion bestimmst. Teste dein neues Wissen anhand der Übungsaufgaben. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Bestimme den y-Achsenabschnitt der Funktion.

y-achsenabschnitt-aufgabe-1

Teste dein Wissen!

Bestimme den y-Achsenabschnitt der Funktion.

y-achsenabschnitt-aufgabe-2

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme jeweils den y-Achsenabschnitt der Funktionen.

a) $f(x) = -34  \cdot x -20$
b) $f(x) = 2 +3 \cdot x$
c) $f(x) = 0,5 +x\cdot 2$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Als y-Achsenabschnitt bezeichnet man den Punkt, in dem die Gerade die y-Achse schneidet. Bestimme die x-Koordinate dieses Punktes.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8564