Mathematik > Funktionen

Lineare Funktionen - So löst du eine Textaufgabe!

Lineare Funktionen - So löst du eine Textaufgabe! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Lerntext schauen wir uns Beispielaufgaben zu linearen Funktionen an und wie du anhand von Textaufgaben eine Funktionsgleichung erstellst. Selbstverständlich geben wir zu jeder Aufgabe eine Lösung mit an.

Definition einer linearen Funktion

Eine Funktion stellt immer das Verhältnis zweier Variablen dar. Meist werden die zwei Variablen $x$ und $y$ genannt. Dieses Verhältnis kann dann durch eine Gleichung ausgedrückt und in einem Koordinatensystem eingezeichnet werden.
Lineare Funktionen beschreiben immer ein lineares Verhältnis zwischen zwei Variablen. 

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m : Steigung}$

$\textcolor{blue}{n : y-Achsenabschnitt}$

$x:$ unabhängige Variable
$f(x) = y:$ abhängige Variable

beispiel-lineare-funnktion1
Abbildung einer linearen Funktion mit y-Achsenabschnitt, Nullstelle und Steigungsdreieck

Beispielaufgabe: Taschengeld sparen

Beispiel

Beispiel

Hier klicken zum Ausklappen

Aufgabe:
Sarah hat $100$€ zur Kommunion geschenkt bekommen und möchte das Geld sparen. Jeden Monat spart sie die Hälfte ihres Taschengeldes in einer Spardose. Sie bekommt im Monat $10$€ Taschengeld.

Stelle eine passende Funktion zu dem Sachverhalt auf, wobei die Variable die Zeit in Monaten sein soll.

Lösung:
Der Anfangswert beträgt $100€ \rightarrow A_0 = 100 $
Jeden Monat kommt die Hälfte von $10$€ dazu. Damit ist die Steigung $\rightarrow m=5$

Es ergibt sich folgende Gleichung:
$f(x) = 100 + 5 \cdot x$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispielaufgabe: Tropfender Wasserhahn

Aufgabe:

Familie Mayer ist für drei Wochen in den Urlaub gefahren. Dabei haben sie nicht gemerkt, dass der Wasserhahn in der Küche nicht ganz zugedreht war. Aus ihm tropfen gleichmäßig fünf Tropfen in der Minute. $100$ Tropfen ergeben ca. ein Wasserglas, also $0,2l$.

Erstelle eine Funktionsgleichung zu dem Sachverhalt, wobei die Variabel ($x$) die Zeit in Tagen sein soll. Rechne damit die Wassermenge in $l$ aus, die nach der dritten Woche aus dem Hahn getropft ist.

Lösung:

Vertiefung

Hier klicken zum Ausklappen
Klicke hier, um die Lösungen zu öffnen.

Zunächst müssen wir berechnen, wie viele Tropfen an einem Tag aus dem Hahn laufen:

Pro Minute $5$ Tropfen $\rightarrow$ pro Stunde $5 \cdot 60 = 300$ Tropfen $\rightarrow$ pro Tag $300 \cdot 24= 7.200$ Tropfen

Die Anzahl der Tropfen muss nun mit dem Dreisatz noch in $ml$ umgeformt werden:
$100 \rightarrow 0,2l$
$1 \rightarrow 0,002l$
$7200 \rightarrow 14,4l$

Daraus kann jetzt die Funktion erstellt werden:

$f(x) = 14,4 \cdot x$ Dabei sind $x$ die Tage und $f(x)$ die Wassermenge.

Drei Wochen haben 21 Tage, also setzten wir für $x$ den Wert 21 ein:

$f(21) = 14,4l \cdot 21 = 302,4l$

Damit sind in drei Wochen ca. $300l$ aus dem Hahn getropft.

Beispielaufgabe: Kosten pro gekaufter Kugel Eis

Aufgabe:

Frau Schuhmann hat ihre Schulklasse zum Eis essen eingeladen. Eine Kugel Eis kostet $0,90$ € und die Klasse besteht aus $25$ Kindern. Nun überlegt Frau Schuhmann, wie viele Kugeln Eis jedes Kind essen darf, wenn sie höchstens $40$€ ausgeben möchte.
Erstelle die lineare Funktion zu dem Sachverhalt und berechne mit der Funktion, wie viele Kugeln Eis jeder Schüler essen darf.

Lösung:

Vertiefung

Hier klicken zum Ausklappen
Klicke hier, um die Lösungen zu öffnen

Funktion: $f(x) = 0,9\cdot x$
$0,9$ ist die Änderungsrate, $x$ ist die Variable, die die Anzahl der Kugeln widerspiegelt und der $y$-Wert sind die Gesamtkosten.

Setzen wir $40$€ als Gesamtkosten in die Funktion ein und lösen nach $x$ auf:
$f(x) = 40 = 0,9 \cdot x$                 $|:0,9$
$\frac{40}{0,9}= 44,44= x$
Von $40$€ kann Frau Schuhmann maximal $44$ Kugeln kaufen. Da die Klasse aus $25$ Schülern besteht, teilen wir durch $25$.
$\frac{44}{25}= 1,76$
Wenn jeder Schüler gleich viele Kugeln bekommen soll, darf jeder Schüler nur eine Kugel essen.

Nun haben wir uns drei Textaufgaben angeschaut. Mit den Übungsaufgaben kannst du dich weiter mit dem Thema vertraut machen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welche Funktionen sind lineare Funktionen?

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Bestimme die Funktionsgleichung der abgebildeten Funktion!

y-achsenabschnitt-aufgabe-2

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Marla hat $20$€ von ihrer Oma geschenkt bekommen. Nun hat sie vor, sich jeden Schultag einen Apfel zu kaufen. Ein Apfel kostet $60$ Cent und Marla geht fünf Tage in der Woche zur Schule.
Wie sieht die passende Funktion zu diesem Sachverhalt aus, wenn $f(x)$ der Restbetrag des Geldes ist und $x$ die Anzahl der Wochen ($7$ Tage)?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Anwendungsaufgabe trifft auf die Funktion $f(x) = 3+ 1\cdot x$ zu?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

15.05.2023 , von Rainer W.
Ich find die Nachhilfe bisher sehr gut. Mein Lehrer kann mir meine Fragen sehr gut erklären
15.05.2023 , von Giovanna B.
Kurzfristige Terminänderungen sind möglich. Feedback und Kommunikation stimmen.
15.05.2023 , von Daniela M.
Meine Tochter besucht die Nachhilfe gern, wird immer wieder neu motiviert und versteht den Unterrichtsstoff (Mathe) inzwischen viel besser. Wir sind sehr zufrieden!
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7759