Lineare Funktionen - So löst du eine Textaufgabe!
In diesem Lerntext schauen wir uns Beispielaufgaben zu linearen Funktionen an und wie du anhand von Textaufgaben eine Funktionsgleichung erstellst. Selbstverständlich geben wir zu jeder Aufgabe eine Lösung mit an.
Definition einer linearen Funktion
Eine Funktion stellt immer das Verhältnis zweier Variablen dar. Meist werden die zwei Variablen $x$ und $y$ genannt. Dieses Verhältnis kann dann durch eine Gleichung ausgedrückt und in einem Koordinatensystem eingezeichnet werden.
Lineare Funktionen beschreiben immer ein lineares Verhältnis zwischen zwei Variablen.
Gut zu wissen
Hinweis
$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$
$\textcolor{red}{m : Steigung}$
$\textcolor{blue}{n : y-Achsenabschnitt}$
$x:$ unabhängige Variable
$f(x) = y:$ abhängige Variable

Beispielaufgabe: Taschengeld sparen
Beispiel
Beispiel
Aufgabe:
Sarah hat $100$€ zur Kommunion geschenkt bekommen und möchte das Geld sparen. Jeden Monat spart sie die Hälfte ihres Taschengeldes in einer Spardose. Sie bekommt im Monat $10$€ Taschengeld.
Stelle eine passende Funktion zu dem Sachverhalt auf, wobei die Variable die Zeit in Monaten sein soll.
Lösung:
Der Anfangswert beträgt $100€ \rightarrow A_0 = 100 $
Jeden Monat kommt die Hälfte von $10$€ dazu. Damit ist die Steigung $\rightarrow m=5$
Es ergibt sich folgende Gleichung:
$f(x) = 100 + 5 \cdot x$
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Beispielaufgabe: Tropfender Wasserhahn
Aufgabe:
Familie Mayer ist für drei Wochen in den Urlaub gefahren. Dabei haben sie nicht gemerkt, dass der Wasserhahn in der Küche nicht ganz zugedreht war. Aus ihm tropfen gleichmäßig fünf Tropfen in der Minute. $100$ Tropfen ergeben ca. ein Wasserglas, also $0,2l$.
Erstelle eine Funktionsgleichung zu dem Sachverhalt, wobei die Variabel ($x$) die Zeit in Tagen sein soll. Rechne damit die Wassermenge in $l$ aus, die nach der dritten Woche aus dem Hahn getropft ist.
Lösung:
Vertiefung
Klicke hier, um die Lösungen zu öffnen.
Zunächst müssen wir berechnen, wie viele Tropfen an einem Tag aus dem Hahn laufen:
Pro Minute $5$ Tropfen $\rightarrow$ pro Stunde $5 \cdot 60 = 300$ Tropfen $\rightarrow$ pro Tag $300 \cdot 24= 7.200$ Tropfen
Die Anzahl der Tropfen muss nun mit dem Dreisatz noch in $ml$ umgeformt werden:
$100 \rightarrow 0,2l$
$1 \rightarrow 0,002l$
$7200 \rightarrow 14,4l$
Daraus kann jetzt die Funktion erstellt werden:
$f(x) = 14,4 \cdot x$ Dabei sind $x$ die Tage und $f(x)$ die Wassermenge.
Drei Wochen haben 21 Tage, also setzten wir für $x$ den Wert 21 ein:
$f(21) = 14,4l \cdot 21 = 302,4l$
Damit sind in drei Wochen ca. $300l$ aus dem Hahn getropft.
Beispielaufgabe: Kosten pro gekaufter Kugel Eis
Aufgabe:
Frau Schuhmann hat ihre Schulklasse zum Eis essen eingeladen. Eine Kugel Eis kostet $0,90$ € und die Klasse besteht aus $25$ Kindern. Nun überlegt Frau Schuhmann, wie viele Kugeln Eis jedes Kind essen darf, wenn sie höchstens $40$€ ausgeben möchte.
Erstelle die lineare Funktion zu dem Sachverhalt und berechne mit der Funktion, wie viele Kugeln Eis jeder Schüler essen darf.
Lösung:
Vertiefung
Klicke hier, um die Lösungen zu öffnen
Funktion: $f(x) = 0,9\cdot x$
$0,9$ ist die Änderungsrate, $x$ ist die Variable, die die Anzahl der Kugeln widerspiegelt und der $y$-Wert sind die Gesamtkosten.
Setzen wir $40$€ als Gesamtkosten in die Funktion ein und lösen nach $x$ auf:
$f(x) = 40 = 0,9 \cdot x$ $|:0,9$
$\frac{40}{0,9}= 44,44= x$
Von $40$€ kann Frau Schuhmann maximal $44$ Kugeln kaufen. Da die Klasse aus $25$ Schülern besteht, teilen wir durch $25$.
$\frac{44}{25}= 1,76$
Wenn jeder Schüler gleich viele Kugeln bekommen soll, darf jeder Schüler nur eine Kugel essen.
Nun haben wir uns drei Textaufgaben angeschaut. Mit den Übungsaufgaben kannst du dich weiter mit dem Thema vertraut machen. Viel Erfolg dabei!
Video: Simon Wirth
Text: Chantal Rölle
Teste dein Wissen!
Welche Funktionen sind lineare Funktionen?
Bestimme die Funktionsgleichung der abgebildeten Funktion!
Marla hat $20$€ von ihrer Oma geschenkt bekommen. Nun hat sie vor, sich jeden Schultag einen Apfel zu kaufen. Ein Apfel kostet $60$ Cent und Marla geht fünf Tage in der Woche zur Schule.
Wie sieht die passende Funktion zu diesem Sachverhalt aus, wenn $f(x)$ der Restbetrag des Geldes ist und $x$ die Anzahl der Wochen ($7$ Tage)?
Welche Anwendungsaufgabe trifft auf die Funktion $f(x) = 3+ 1\cdot x$ zu?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema











Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen