Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Dreisatz - Aufgaben, Erklärung und Berechnung

Dreisatz - Aufgaben, Erklärung & Berechnung! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Kapitel behandeln wir den einfachen Dreisatz. Wir erklären dir, was der Dreisatz ist und wann und wie du mit dem Dreisatz rechnen kannst. Hierfür gehen wir zwei Beispielaufgaben durch.

Was ist der Dreisatz?

Der Dreisatz ist ein mathematisches Lösungsverfahren. Mit Hilfe des Dreisatzes können wir Verhältnisaufgaben lösen. Zwei Werte werden zueinander in ein Verhältnis gesetzt, um darauf basierend ein neues Verhältnis aufzustellen. Die Lösung einer solchen Aufgabe erfolgt in drei Schritten, daher auch der Name Dreisatz.

Dreisatzaufgaben: proportionaler Zusammenhang

Um den Dreisatz zu erklären, schauen wir uns ein Beispiel an:

Beispiel

Aufgabe: Ein PKW verbraucht auf 100 km genau 8,2 Liter Benzin. Mit einer Tankfüllung kommt er 620 km weit. Wie viel Liter fasst der Tank des PKWs? Runde dein Ergebnis auf volle Liter.

Für diese Aufgabe benötigen wir den Dreisatz. Wir schreiben die bekannten Verhältnisse untereinander und erhalten:

$100 \;km\;\;\widehat{=}\;\;8,2\;Liter$

$620\;km\;\;\widehat{=}\;\;x\;\;\;Liter$

Das Symbol ($\widehat{=}$) zwischen den Werten ist das Verhältnissymbol und beschreibt, dass diese beiden Werte in einem Verhältnis zueinander stehen. $\widehat{=}$ bedeutet also "entspricht".

Um auf die Lösung zu kommen, müssen wir zunächst ermitteln, wie viel Benzin das Auto pro Kilometer verbraucht. Hierfür rechnen wir auf beiden Seiten durch $100$. Es folgt:

$100\;km\;\;\widehat{=}\;8,2\;Liter$

$1\;\;\;\;km\;\;\widehat{=}\;\frac{8,2}{100}\;Liter$

Im letzten Schritt multiplizieren wir beide Seiten mit dem Wert, der in der Lösung vorkommt. Hier ist dies der Wert $620$. Es entsteht:

$620 \;km\;\;\widehat{=}\;\;\frac{8,2}{100}~Liter~\cdot 620$

Ausgerechnet ergibt das:

$620\;km\;\;\widehat{=}\;\;50,84\;Liter$

Da wir das Ergebnis auf volle Liter runden sollen, ist die Lösung $51$ Liter.

Es handelt sich um einen proportionalen Zusammenhang, da jeder gefahrene Kilometer auch die verbrauchten Liter erhöht. (Je mehr km gefahren werden, desto mehr Benzin wird verbraucht.)

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Dreisatzaufgaben: antiproportionaler Zusammenhang

Beispiel

Aufgabe: Frau Müller möchte ihr Haus streichen lassen. Sie bestellt dafür drei Maler. Diese sagen ihr, dass sie genau 19 Stunden zum Streichen des gesamten Hauses benötigen. Frau Müller möchte jedoch, dass die Arbeit nach maximal acht Stunden erledigt ist. Wie viele Maler müsste sie dann insgesamt bestellen?

Für diese Aufgabe verwenden wir den Dreisatz. Das erste Verhältnis bilden die drei Maler und die 19 Stunden. Das zweite Verhältnis bilden die unbekannte Anzahl an Malern und die 8 Stunden Arbeitszeit.

$3\; Maler\; \widehat{=}\; 19\; Stunden$

$??\;Maler\;\widehat{=}\;8\;Stunden$

Da wir wissen wollen, wie viele Maler notwendig sind, um das Haus in acht Stunden zu streichen, müssen wir die Verhältnisgleichung nach der Zeit auflösen. Wir fügen als zweite Zeile also folgende Zeile ein:

$19 \cdot 3\;Maler\;\widehat{=}\;1\;Stunde$

Wir haben das Verhältnis nach Stunden aufgelöst, indem wir die rechte Seite der Verhältnisgleichung durch $19$ dividiert haben. Da es sich um einen antiproportionalen Dreisatz handelt, müssen wir die linke Seite dann mit $19$ multiplizieren. Es handelt sich um einen antiproportionalen Dreisatz, da eine größere Anzahl an Malern dazu führt, dass das Haus in weniger Stunden gestrichen wird. (Also: Je mehr Maler, desto weniger Stunden werden für das Streichen des Hauses benötigt.)

Im nächsten Schritt müssen wir nun die rechte Seite der Verhältnisgleichung mit $8$ multiplizieren und die linke Seite entsprechend durch $8$ dividieren. Wir erhalten:

$\frac{19\cdot3}{8}\;Maler\;\widehat{=}\;8\;Stunden$

Ausgerechnet ergibt dies:

$7,125\;Maler\;\widehat{=}\;8\;Stunden$

Da es sich um Menschen handelt, können wir das Ergebnis nicht als Bruch oder Dezimalzahl stehen lassen. Wir müssen das Ergebnis auf eine ganze Zahl runden. Da Frau Müller möchte, dass die Malerarbeiten maximal $8$ Stunden dauern, müssen wir das Ergebnis aufrunden. Das Ergebnis ist also $8$ Maler.

Abschließend nun noch einmal die ganze Rechnung auf einen Blick:

$3\; Maler\; \widehat{=}\; 19\; Stunden$

$19 \cdot 3\;Maler\;\widehat{=}\;1\;Stunde$

$7.125\;Maler\;\widehat{=}\;8\;Stunden$

Antwortsatz: Frau Müller muss $8$ Maler bestellen, damit das Haus nach $8$ Stunden vollständig gestrichen ist.

Mit diesen beiden Aufgaben zum Thema Dreisatz können wir nun eine Formel bzw. ein Rezept zum Rechnen mit dem Dreisatz aufstellen. Folgendes Schema hilft dir, jede Dreisatzaufgabe zu lösen:

Merke

Formel zum Dreisatz aufstellen und berechnen:

1. Zusammenhang ermitteln

2. Verhältnisse aufschreiben

3. Verhältnisse mathematisch lösen, um auf das Ergebnis zu kommen

Hier kannst du dir eine Dreisatz Erklärung herunterladen, um einfacher zu lernen.

Nun haben wir dir den Dreisatz erklärt und an verschiedenen Aufgaben gezeigt, wie du mit dem Dreisatz rechnen kannst. Teste dein neu erlerntes Wissen zum Thema Dreisatzrechnung online mit unseren Dreisatz-Übungen und -Aufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Für den Bau von 9 Modellautos werden 630 Bauteile benötigt. Berechne mithilfe des Dreisatzes wie viele Bauteile in 8 Autos verbaut werden.

Teste dein Wissen!

7 Bauern sind in der Lage in einem Monat 42 Felder zu bestellen. Krankheitsbedingt fallen im März 3 Bauern für den ganzen Monat aus. Wie viele Felder können die verbleibenden 4 Bauern in diesem Monat bestellen?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Auf einem Bauernhof legen 4 Hühner 8 Eier pro Tag. Der Bauer möchte sich noch weitere Hühner zulegen und überlegt, wie viele Eier 12 Hühner legen würden. Berechne mittels des Dreisatzes die Zahl an Eiern (unter der Voraussetzung, dass alle Hühner exakt die gleiche Anzahl an Eiern legen).

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bilde die fehlende Zeile zu folgendem Dreisatz:
$6 \;Arbeiter \;\widehat{=}\;2\;Stunden$
$5 \;Arbeiter \;\widehat{=}\;2,4\;Stunden$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

12.07.2024 , von Sabrina B.
ich möchte Ihnen ein außerordentlich positives Feedback zur Nachhilfe für meinen Sohn übermitteln. Die Nachhilfe macht ihm großen Spaß, und er geht sehr gerne dorthin. Besonders beeindruckt bin ich von der Unterstützung und Motivation, die ihm durch die Nachhilfelehrer zugeteilt wird. Es ist bemerkenswert, wie gut die Nachhilfelehrer auf die individuellen Bedürfnisse meines Kindes eingehen und ihn fördern. Im Vergleich dazu können sich die Lehrkräfte in der Schule eine große Scheibe abschneiden. Die positive Entwicklung und das gesteigerte Interesse meines Sohnes an den schulischen Themen sind eindeutig auf die hervorragende Arbeit Ihrer Nachhilfelehrer zurückzuführen. Herzlichen Dank für Ihr Engagement und Ihre professionelle Betreuung. Wir sind sehr froh, dass wir diese Nachhilfe in Anspruch nehmen können. Mit freundlichen Grüßen, Bagnato
11.07.2024 , von Yvonne M.
Sehr gut
11.07.2024 , von Michaela N.
Unser Kind geht sehr gerne zur Nachhilfe.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8636