Suche
Kontakt

Ungleichungen lösen
Mathematik > Terme und Gleichungen

Ungleichungen - Definition und Beispiele | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Artikel beschäftigen wir uns damit, wie wir Ungleichungen mit einer unbekannten Variablen lösen können.

Beispielaufgabe

Schauen wir uns dieses Beispiel an:

$ 25 < 4 \cdot x +5$

Methode

Beim Lösen einer Ungleichung erhältst du kein eindeutiges Ergebnis für $x$, sondern lediglich die Angabe, dass $x$ kleiner oder größer als eine bestimmte Zahl ist.

Um zu einem solchen Ergebnis zu kommen, müssen wir die Ungleichung nach $x$ auflösen. Mithilfe von Äquivalenzumformungen lösen wir die Ungleichung nach $x$ auf. Der einzige Unterschied zu den Gleichungen besteht darin, dass du anstelle des Gleichheitszeichens ein Relationszeichen zwischen den Termen hast. Schreiben wir zur Veranschaulichung einmal eine Gleichung und eine Ungleichung nebeneinander auf und rechnen:

$ 25 = 4 \cdot x +5   | -5 ~~~~~~~~~~~~~~~25 < 4 \cdot x +5 | -5$ 

$ 20 = 4 \cdot x        | :4 ~~~~~~~~~~~~~~~~~~~~20 < 4 \cdot x      | :4$   

$  5 = x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5 < x$  

Die Rechnungen der Gleichung und der Ungleichung sind identisch, lediglich das Ergebnis unterscheidet sich.

Die Gleichung führt zu dem Ergebnis, dass $x$ für die Zahl $5$ steht; das heißt, nur die Zahl $5$ löst die Gleichung und somit ist nur die Zahl $5$ Lösung der Gleichung. Die Ungleichung hingegen führt zu dem Ergebnis, dass $x$ für eine beliebige Zahl, die größer als die Zahl $5$ ist, steht; das heißt, jede Zahl, die größer als die Zahl $5$ ist, löst die Ungleichung. Die Lösung der Ungleichung ist also ein Zahlenbereich, der unendlich groß ist.

Merke

Ungleichungen lassen sich genauso wie Gleichungen mithilfe von Äquivalenzumformungen lösen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Ausnahmeregel beim Lösen von Ungleichungen

Eine wichtige Regel musst du allerdings beachten: Wenn du bei einer Ungleichung im Zuge einer Äquivalenzumformung mit einer negativen Zahl multiplizierst oder durch eine negative Zahl dividierst, musst du das Größer-Kleiner-Zeichen umdrehen.

Merke

Wenn man im Zuge einer Äquivalenzumformung eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl dividiert, muss man das Relationszeichen umdrehen.

Wieso muss man das? Schauen wir uns zur Beantwortung dieser Frage das Beispiel an.

$ 25 < 4 \cdot x +5  $

Das Ergebnis dieser Ungleichung kennen wir schon, nämlich $x > 5$. Dieses Ergebnis erhalten wir, wenn wir zunächst $-5$ und danach $:4$ rechnen. Es gibt aber auch noch einen zweiten, etwas komplizierteren Weg:

$ 25 < 4 \cdot x +5  | -25$

$   0 < 4 \cdot x -20   | - 4 \cdot x  $

$-  4 \cdot x < -20  $

Wie du siehst, haben wir die Variable in diesem Fall über einen deutlich längeren Rechenweg auf die linke Seite gebracht. Auch diese Ungleichung müsste $x>5$ ergeben.

$-  4 \cdot x < -20  $

$-  4 \cdot x < -20   | :(-4)  $

$ \textcolor{red}{x < 5}$

Was ist denn jetzt passiert? Wir haben die Gleichung wie immer umgeformt und erhalten genau das gegenteilige Ergebnis. Warum ist x auf einmal kleiner fünf? Tatsächlich ist x nicht kleiner als die Zahl fünf. Unser Ergebnis ist falsch!

Wir müssen uns aber keine Vorwürfe machen: Bis jetzt wussten wir es einfach noch nicht besser. Bei der Division durch eine negative Zahl muss man bei Ungleichungen eine Regel beachten, die es beim Lösen von Gleichungen nicht gibt: Man muss das Relationszeichen umdrehen. Dieselbe Regel musst du übrigens auch anwenden, wenn du eine Ungleichung mit einer negativen Zahl multiplizierst.

Beachten wir diese neue Regel, kommen wir auch bei der obigen Ungleichung auf das richtige Ergebnis:

$-  4 \cdot x < -20   | \textcolor{green}{:(-4)}  $

$ x\textcolor{green}{>}5$

Nun weißt du, wie du mit Ungleichungen rechnen kannst und wie du diese löst. Vertiefe dein neues Wissen in unseren Übungsaufgaben. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Löse die beiden Ungleichungen.
Für welche ganze Zahl steht x?

a) $ 3 - 2\cdot x > 1$

b) $ x + 3 > 2$

Teste dein Wissen!

Welches Ergebnis ist richtig?

$ 14 - 7 \cdot x < 3 - (10 - 7)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was musst du beachten, wenn du eine Ungleichung durch eine negative Zahl dividierst?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was musst du beachten, wenn du eine Ungleichung mit einer negativen Zahl multiplizierst?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
15.01.2025 , von Simone K.
Wir sind sehr zufrieden mit dem Studienkreis!
14.01.2025 , von Madlen M.
Meine Tochter geht sehr gerne hin, kurzfristig konnten wir noch eine zweite Stunde/Fach dazubuchen. Es wird sehr auf die Größe der Gruppe geachtet und das es von der Klassenstufe zusammenpasst. So kann es bleiben.
13.01.2025 , von Osman A.
Wir glauben, dass es besser wäre, die Eltern der Schüler, die alle sechs Monate hierher kommen, zu treffen und ihnen allgemeine Informationen über die Schüler zu geben.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7872