Mathematik > Terme und Gleichungen

Ungleichungen lösen

Inhaltsverzeichnis:

In diesem Artikel beschäftigen wir uns damit, wie wir Ungleichungen mit einer unbekannten Variablen lösen können.

Beispielaufgabe

Schauen wir uns dieses Beispiel an:

$ 25 < 4 \cdot x +5$

Methode

Methode

Hier klicken zum AusklappenBeim Lösen einer Ungleichung erhältst du kein eindeutiges Ergebnis für $x$, sondern lediglich die Angabe, dass $x$ kleiner oder größer als eine bestimmte Zahl ist.

Um zu einem solchen Ergebnis zu kommen, müssen wir die Ungleichung nach $x$ auflösen. Mithilfe von Äquivalenzumformungen lösen wir die Ungleichung nach $x$ auf. Der einzige Unterschied zu den Gleichungen besteht darin, dass du anstelle des Gleichheitszeichens ein Relationszeichen zwischen den Termen hast. Schreiben wir zur Veranschaulichung einmal eine Gleichung und eine Ungleichung nebeneinander auf und rechnen:

$ 25 = 4 \cdot x +5   | -5 ~~~~~~~~~~~~~~~25 < 4 \cdot x +5 | -5$ 

$ 20 = 4 \cdot x        | :4 ~~~~~~~~~~~~~~~~~~~~20 < 4 \cdot x      | :4$   

$  5 = x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5 < x$  

Die Rechnungen der Gleichung und der Ungleichung sind identisch, lediglich das Ergebnis unterscheidet sich.

Die Gleichung führt zu dem Ergebnis, dass $x$ für die Zahl $5$ steht; das heißt, nur die Zahl $5$ löst die Gleichung und somit ist nur die Zahl $5$ Lösung der Gleichung. Die Ungleichung hingegen führt zu dem Ergebnis, dass $x$ für eine beliebige Zahl, die größer als die Zahl $5$ ist, steht; das heißt, jede Zahl, die größer als die Zahl $5$ ist, löst die Ungleichung. Die Lösung der Ungleichung ist also ein Zahlenbereich, der unendlich groß ist.

Merke

Merke

Hier klicken zum Ausklappen

Ungleichungen lassen sich genauso wie Gleichungen mithilfe von Äquivalenzumformungen lösen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Ausnahmeregel beim Lösen von Ungleichungen

Eine wichtige Regel musst du allerdings beachten: Wenn du bei einer Ungleichung im Zuge einer Äquivalenzumformung mit einer negativen Zahl multiplizierst oder durch eine negative Zahl dividierst, musst du das Größer-Kleiner-Zeichen umdrehen.

Merke

Merke

Hier klicken zum Ausklappen

Wenn man im Zuge einer Äquivalenzumformung eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl dividiert, muss man das Relationszeichen umdrehen.

Wieso muss man das? Schauen wir uns zur Beantwortung dieser Frage das Beispiel an.

$ 25 < 4 \cdot x +5  $

Das Ergebnis dieser Ungleichung kennen wir schon, nämlich $x > 5$. Dieses Ergebnis erhalten wir, wenn wir zunächst $-5$ und danach $:4$ rechnen. Es gibt aber auch noch einen zweiten, etwas komplizierteren Weg:

$ 25 < 4 \cdot x +5  | -25$

$   0 < 4 \cdot x -20   | - 4 \cdot x  $

$-  4 \cdot x < -20  $

Wie du siehst, haben wir die Variable in diesem Fall über einen deutlich längeren Rechenweg auf die linke Seite gebracht. Auch diese Ungleichung müsste $x>5$ ergeben.

$-  4 \cdot x < -20  $

$-  4 \cdot x < -20   | :(-4)  $

$ \textcolor{red}{x < 5}$

Was ist denn jetzt passiert? Wir haben die Gleichung wie immer umgeformt und erhalten genau das gegenteilige Ergebnis. Warum ist x auf einmal kleiner fünf? Tatsächlich ist x nicht kleiner als die Zahl fünf. Unser Ergebnis ist falsch!

Wir müssen uns aber keine Vorwürfe machen: Bis jetzt wussten wir es einfach noch nicht besser. Bei der Division durch eine negative Zahl muss man bei Ungleichungen eine Regel beachten, die es beim Lösen von Gleichungen nicht gibt: Man muss das Relationszeichen umdrehen. Dieselbe Regel musst du übrigens auch anwenden, wenn du eine Ungleichung mit einer negativen Zahl multiplizierst.

Beachten wir diese neue Regel, kommen wir auch bei der obigen Ungleichung auf das richtige Ergebnis:

$-  4 \cdot x < -20   | \textcolor{green}{:(-4)}  $

$ x\textcolor{green}{>}5$

Nun weißt du, wie du mit Ungleichungen rechnen kannst und wie du diese löst. Vertiefe dein neues Wissen in unseren Übungsaufgaben. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Löse die beiden Ungleichungen.
Für welche ganze Zahl steht x?

a) $ 3 - 2\cdot x > 1$

b) $ x + 3 > 2$

Teste dein Wissen!

Welches Ergebnis ist richtig?

$ 14 - 7 \cdot x < 3 - (10 - 7)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was musst du beachten, wenn du eine Ungleichung durch eine negative Zahl dividierst?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was musst du beachten, wenn du eine Ungleichung mit einer negativen Zahl multiplizierst?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7872