Mathematik > Terme und Gleichungen

Gleichungen aufstellen und lösen

Inhaltsverzeichnis:

In diesem Text erfährst du, wie du in der Mathematik Gleichungen aufstellen und Gleichungen lösen kannst. An Beispielaufgaben zeigen wir dir, wie du dabei am besten vorgehst. 

3 Fakten über Gleichungen in der Mathematik

Wir haben dir hier bereits die wichtigsten Informationen aufgelistet, die dir beim Verstehen und Lösen von Gleichungen helfen:

Merke

Merke

Hier klicken zum Ausklappen

1. Gleichungen bestehen aus zwei Termen.
2. Das Gleichheitszeichen verbindet zwei Terme und bildet eine Gleichung.
3. Durch Äquivalenzumformungen können Gleichungen gelöst werden.

Im Folgenden erklären wir dir diese Informationen nun detaillierter und schauen uns beispielhaft einige Aufgaben zu Gleichungen an.

Was ist eine Gleichung?

Gleichungen sind euch wahrscheinlich schon oft im Unterricht begegnet, denn das mathematische Zeichen, das eine Gleichung beschreibt, kennst du seit der Grundschule: das Gleichheitszeichen $\rightarrow~~ =$. Dieses Zeichen beschreibt die Gleichheit zweier Terme. Diese Terme können aus Additionen, Divisionen, Multiplikationen und Subtraktionen oder auch nur aus Zahlen bestehen.

Beispiel

Beispiel

Hier klicken zum Ausklappen$4x+5=2x-10$

Wie wir sehen können, besteht die Gleichung aus zwei Termen:

$\textcolor{red}{4x+5} ~= \textcolor{blue}{2x-10}$
$\textcolor{red}{Term 1} =\textcolor{blue}{Term 2}$
$~~~~~~Gleichung$

Merke

Merke

Hier klicken zum Ausklappen

Eine Gleichung besteht aus zwei Termen, die durch ein Gleichheitszeichen verbunden sind.

Deine Aufgabe ist es, die Gleichung zu lösen, d.h. für die Variable $x$ eine Zahl zu finden, mit der beide Terme denselben Wert annehmen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Gleichungen umformen und lösen

Um eine Gleichung zu lösen, nutzen wir die Äquivalenzumformung. Um mehr über das Lösen von Gleichungen zu erfahren, schaue dir folgende Seite an: Gleichungen lösen

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x - 34 = 22~~~~~~~~~~|+34$
$\Leftrightarrow x = 56$

$x + 3 = 7~~~~~~~~~~~~~~|-3$
$\Leftrightarrow x = 4$

$\frac{x}{3} = 5~~~~~~~~~~~~~~~~~~~~|\cdot3$
$\Leftrightarrow x = 15$

$5 \cdot x = 30~~~~~~~~~~~~~~|:5$
$\Leftrightarrow x = 6$

Natürlich sind die Gleichungen meist nicht so einfach wie in den obigen Beispielen. Die Schwierigkeit liegt in der Kombination der Methoden.

Merke

Merke

Hier klicken zum Ausklappen

Um eine Gleichung zu lösen, wendet man die Äquivalenzumformung an. Dabei gilt:

  • du musst auf beiden Seiten der Gleichung dieselbe Zahl addieren oder subtrahieren.
  • du musst auf beiden Seiten der Gleichung dieselbe Zahl (außer null) multiplizieren oder dividieren.

Schauen wir uns ein etwas schwierigeres Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$-x+5= (25+2x)\cdot 3$

$\Leftrightarrow -x+5 = 75 +6 x ~~~~~~~| +x$

$\Leftrightarrow  5= 75 +7x ~~~~~~~~~~~~~~~~| -75$

$\Leftrightarrow -70 = 7x~~~~~~~~~~~~~~~~~~~~~|:7$

$\Leftrightarrow -10=x$

Fassen wir die Vorgehensweise für das Lösen von Gleichungen noch einmal zusammen:

Merke

Merke

Hier klicken zum Ausklappen

Beim Lösen von Gleichungen, in denen die Variable mehrmals vorkommt, gelten folgende Arbeitsschritte:

  1. Fasse die einzelnen Terme soweit wie möglich zusammen.
  2. Bringe die Variable durch Äquivalenzumformung auf eine Seite.
  3. Löse die Gleichung durch weitere Äquivalenzumformungen.

Gleichungen aufstellen

Du kannst einen gegebenen Text oder auch einen Sachverhalt in eine Gleichung umformen.

Schauen wir uns zunächst an, wie ein Text in eine Gleichung umgeformt wird. Dafür solltest du folgende Ausdrücke kennen:

Addition (+)
$Summand + Summand= Summe$
addieren, zusammenzählen ...

Subtraktion (-)
$Minuend - Subtrahend = Differenz$
subtrahieren, minus rechnen, abziehen, Unterschied oder Differenz (Größere - Kleinere) ...

Division (:)
$\frac{Divisor}{Dividend}=Quotient$
teilen, dividieren, halbieren ...

Multiplikation ($\cdot$)
$Faktor \cdot Faktor = Produkt$
mal rechnen, vervielfachen, multiplizieren, das Produkt berechnen ...

Beispiel

Beispiel

Hier klicken zum Ausklappen

Die Summe aus $14$ und $8$ ist das Gleiche wie das Doppelte von x.
$14+8 = {x}\cdot{2}$

Das Produkt aus der Differenz von $5$ und $2$ mit $10$ ist gleich $30$.
${5-2}\cdot{10}=30$

Diese Gleichungen können durch Äquivalenzumformung einfach ausgerechnet werden.

Haben wir Sachverhalte gegeben, wird der Text zunächst auf wichtige Informationen untersucht. Was ist gesucht und was ist gegeben? Markiere dir die wichtigen Informationen, damit der Text übersichtlich bleibt. Aus den Informationen muss anschließend eine Gleichung aufgestellt werden. Schauen wir uns einige Beispiele an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

1) Alter

Marla ist doppelt so alt wie Tim. Marla und Tim sind zusammen $30$ Jahre als. Wie alt ist Marla?

$m$ ist das Alter von Marla und $t$ ist das Alter von Tim. Dabei gilt: $m=2t$

$t + m = t +2t= 30$
$\Leftrightarrow 3t = 30 ~~~~~~~~~~~~~~~~~|:3$
$\Leftrightarrow t=10$

Tim ist $10$ Jahre alt und Marla ist $20$ Jahre alt.

Beispiel

Beispiel

Hier klicken zum Ausklappen

2) Kerzen

Sarah zündet zwei verschiedene Kerzen gleichzeitig an. Die eine Kerze ist $25 cm$ lang und brennt mit jeder Minute $1 mm$ ab. Die andere Kerze ist $30 cm$ lang und brennt jede Minute $1,5 mm$ jede Minute.
Nach welcher Zeit sind beide Kerzen gleich lang?

Der Term beschreibt die Höhe der kürzeren Kerze in $cm$, wobei $x$ die Zeit in Minuten ist:
$25 cm - 1 mm \cdot x= 25 cm -0,1 cm \cdot x$ 

Der zweite Term beschreibt die Höhe der längeren Kerze in $cm$, wobei $x$ wieder die Zeit in Minuten ist:
$30 cm - 1,5 mm =30 cm - 0,15 cm \cdot x$

Da wir berechnen möchten, wann beide Kerzen gleich lang sind, müssen wir die Terme gleichsetzen. $\rightarrow Höhe1= Höhe 2$

$ 25 cm -0,1 cm \cdot x  =  30 cm - 0,15 cm \cdot x~~~~~~|+0,15 \cdot x$

$\Leftrightarrow 25 cm +0,05 cm \cdot x = 30 cm ~~~~~~~~~~~~~~~~~~~~~~~|-25cm$

$\Leftrightarrow 0,05 cm \cdot x = 5 cm~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| 0,05cm$

$\Leftrightarrow x = \frac{5cm}{0,05cm}= 100$

Nach $100$ min sind die beiden Kerzen gleich lang.

Probe:
$Höhe 1 = 25 cm -0,1 cm \cdot 100 = 15cm$
$Höhe 2 = 30 cm - 0,15 cm \cdot 100 = 15cm$

Nun haben wir anhand einiger Beispiele das Aufstellen und Lösen von Gleichungen gelernt. Mit den Übungsaufgaben kannst du dein neu erworbenes Wissen überprüfen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was beschreibt folgenden Term richtig?
$\frac{15+3}{2}\cdot (6-4) = x-8$

Teste dein Wissen!

Welche Gleichung passt zu folgendem Sachverhalt?
Anna und Tim haben zusammen 8 Bonbons gekauft. Dabei hat Tim jedoch 2 mehr bezahlt. Wie viel Bonbons hat Anna bezahlt?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Löse folgende Gleichung und kennzeichne das richtige Ergebnis: $\frac{100x}{5} \cdot 3+7x = 2\cdot x+32,2$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche der folgenden Arbeitsschritte gehören zum Lösen von Gleichungen? Kreuze an!

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8593