Mathematik > Terme und Gleichungen

Gleichungen mit Klammern auflösen - Ausmultiplizieren

Inhaltsverzeichnis:

In der Regel werden Klammern immer innerhalb einer Addition, Subtraktion oder Multiplikation angewendet. Um diese Terme und Gleichungen zusammenfassen zu können, müssen die Klammern zunächst aufgelöst werden. Wie das Rechnen mit Klammern im Detail funktioniert, schauen wir uns im Folgenden an.

Gleichungen mit Klammern auflösen

Um Gleichungen mit Klammern auflösen zu können, verwenden wir bestimmte mathematische Regeln. Dabei können wir folgende Fälle berechnen:

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen
  • Pluszeichen vor der Klammer
  • Minuszeichen vor der Klammer
  • Faktor vor der Klammer
  • Multiplikation zweier oder mehrerer Klammern

Nun schauen wir uns die einzelnen Fälle und ihre jeweiligen Regeln genauer an:

Plusklammer auflösen

Die einfachste Form eines Terms mit Klammern ist, wenn vor der Klammer ein Pluszeichen steht:

$+(a +b)=+ a + b = a + b$

$+(a - b) = + a - b = a - b$

$+ (a\cdot b) = + a \cdot b = a \cdot b$

Wie du siehst, kannst du in diesen Fällen die Klammern einfach wegnehmen, egal welche Rechnung in der Klammer steht. 

Beispiel

Beispiel

Hier klicken zum Ausklappen

$+ (5 + x) = 5 + x$

$+ (x - 3) = x - 3$

$+ (7 \cdot x) = 7 \cdot x$

Minusklammer auflösen

Beim Auflösen von Klammern, deren Vorzeichen ein Minus ist, musst du ein wenig aufpassen:

$ - (a + b)  = - a - b$

$ - (a - b) = - a + b$

Methode

Methode

Hier klicken zum Ausklappen

Hier greifen beim Ausklammern die ganz normalen Regeln zum Rechnen mit negativen Zahlen:

(1) minus auf plus ergibt minus

(2) minus auf minus ergibt plus

Beispiel

Beispiel

Hier klicken zum Ausklappen

$-  (3 + x) = - 3 - x$

$- (5 - x) = - 5 + x$ 

Faktor vor der Klammer

Ist die Klammer Teil eines Produktes, musst du auf mehr als nur das Vorzeichen achten. Steht vor der Klammer ein Faktor, so wird beim Auflösen der Klammer jede Zahl in der Klammer mit diesem Faktor multipliziert. 

$a \cdot (b + c) = a\cdot b + a \cdot c$

$a \cdot (b - c) = a\cdot b - a\cdot c$

$- a \cdot (b + c) = - a \cdot b - a\cdot c$

$- a \cdot (b - c) = - a \cdot b + a\cdot c$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$- 3 \cdot (x + 5) = -3 \cdot x - 15$

$- 2 \cdot (13 - x) = - 26 + 2\cdot x$

$9 \cdot (x + 2) = 9 \cdot x + 18$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Klammern ausmultiplizieren

Etwas schwieriger wird es, wenn vor der Klammer nicht nur ein Faktor steht, sondern noch eine weitere Klammer. Um die Klammern aufzulösen, musst du nun die Klammern ausmultiplizieren, indem du jede Zahl der einen Klammer mit jeder Zahl der anderen Klammer multiplizierst.

$(\textcolor{blue}{a} + \textcolor{blue}{b}) \cdot (\textcolor{red}{c} + \textcolor{red}{d}) = (\textcolor{blue}{a} \cdot \textcolor{red}{c}) + (\textcolor{blue}{a}\cdot \textcolor{red}{d}) + (\textcolor{blue}{b}\cdot \textcolor{red}{c}) + (\textcolor{blue}{b} \cdot \textcolor{red}{d})$

Natürlich spielen auch in diesem Fall die Vorzeichen eine wichtige Rolle. Schauen wir uns an, was passiert, wenn wir Plus- und Minuszeichen in den Klammern variieren.

  • $(\textcolor{blue}{a} + \textcolor{blue}{b}) \cdot (\textcolor{red}{c} - \textcolor{red}{d}) = (\textcolor{blue}{a} \cdot \textcolor{red}{c}) - (\textcolor{blue}{a}\cdot \textcolor{red}{d}) + (\textcolor{blue}{b}\cdot \textcolor{red}{c}) - (\textcolor{blue}{b} \cdot \textcolor{red}{d})$
  • $(\textcolor{blue}{a} - \textcolor{blue}{b}) \cdot (\textcolor{red}{c} + \textcolor{red}{d}) = (\textcolor{blue}{a} \cdot \textcolor{red}{c}) + (\textcolor{blue}{a}\cdot \textcolor{red}{d}) - (\textcolor{blue}{b}\cdot \textcolor{red}{c}) - (\textcolor{blue}{b} \cdot \textcolor{red}{d})$
  • $(\textcolor{blue}{a} - \textcolor{blue}{b}) \cdot (\textcolor{red}{c} - \textcolor{red}{d}) = (\textcolor{blue}{a} \cdot \textcolor{red}{c}) - (\textcolor{blue}{a}\cdot \textcolor{red}{d}) - (\textcolor{blue}{b}\cdot \textcolor{red}{c}) + (\textcolor{blue}{b} \cdot \textcolor{red}{d})$

Methode

Methode

Hier klicken zum Ausklappen

Das Ausmultiplizieren zweier Klammern folgt diesen Vorzeichenregeln:

  • $(+) \cdot (+) = (+)$
  • $(+) \cdot (-) = (-)$
  • $(-) \cdot (+) = (-)$
  • $(-) \cdot (-) = (+)$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(3+x) \cdot (x-2) = (3 \cdot x) - (2 \cdot 3) + (x \cdot x) - (x \cdot 2) = 3\cdot x - 6 + x^2 - 2\cdot x$

$(-4+z)\cdot (9+z) = (-4 \cdot 9) -(4 \cdot z) + (z \cdot 9) + (z \cdot z) = -36 - 4\cdot z + 9\cdot z + z^2$

$(10-y) \cdot (y-7) = (10 \cdot y) - (10 \cdot 7) - (y \cdot y) + (y \cdot 7) = 10\cdot y - 70 - y^2 + 7\cdot y$

Ausklammern - Aufgabe und Lösungsweg

Mit diesen Regeln im Hinterkopf schauen wir uns nun folgende Aufgabe an:

$6 \cdot (5 \cdot x -2) = 14 - (10\cdot x - 14)$

Dabei haben wir auf der linken Seite eine Klammer, die Teil eines Produktes ist. Wir müssen also die Klammer auflösen, indem wir sie ausmultiplizieren.

$6 \cdot (5 \cdot x -2) = 14 - (10\cdot x - 14)$

$6 \cdot 5 \cdot x - 6 \cdot 2 = 14 - (10\cdot x - 14)$

$30 \cdot x - 12 = 14 - (10\cdot x - 14)$

Auf der rechten Seite haben wir ein Minus vor der Klammer. Wir müssen also darauf achten, welches Vorzeichen die einzelnen Werte beim Auflösen der Klammer erhalten.

$30 \cdot x - 12 = 14 - 10\cdot x + 14$

Von jetzt an kannst du die Gleichung wieder wie gewohnt lösen, indem du zunächst die Variable auf eine Seite und die Zahlen auf die andere Seite bringst. Probiere es zunächst selber, bevor du die Lösung aufklappst!

Vertiefung

Hier klicken zum Ausklappen
Lösung

$30 \cdot x - 12 = 14 - 10\cdot x + 14$

$30 \cdot x - 12 = 14 - 10\cdot x + 14  | + 10\cdot x $

$40 \cdot x - 12 = 14 + 14  | + 12 $

$40 \cdot x = 40 $ | : 40

$x = 1$

Teste dein neu erlerntes Wissen über das Ausklammern mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie löse ich die Klammer richtig auf?

$(a - b) cdot frac{2}{3}$

Teste dein Wissen!

Vereinfache folgenden Term, indem du zunächst die Klammern auflöst und dann soweit wie möglich zusammenfasst.

$9\cdot (x -12) + 4 \cdot x - (3 - 7)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Löse die Gleichung.

$ (x + 3) \cdot 8 = 32 \cdot x$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Löse die folgende Gleichung, indem du zunächst die Klammern auflöst und dann nach x umstellst. Markiere die richtige Lösung.

$4\cdot x - (5\cdot x - 17) = 7 - x + (x + 6)$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8594