Bruchungleichungen lösen: Erklärung und Beispiele

Mathematik > Terme und Gleichungen
Bruchungleichungen lösen: Erklärung und Beispiele | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Neben linearen Ungleichungen gibt es auch Bruchungleichungen. Eine Bruchungleichung ist eine Ungleichung, die aus mindestens einem Bruchterm besteht. Ein Bruchterm ist ein Bruch, dessen Nenner eine Variable enthält. Wie lineare Ungleichungen lassen sich auch Bruchungleichungen mit Hilfe von Äquivalenzumformungen lösen. Und auch bei den Bruchungleichungen musst du beachten, dass du das Relationszeichen > 0 oder < 0 setzt. 

Beispiel

$\frac{x+2}{x-5} > 0$

Definitionsmenge einer Bruchungleichung

Wie bei der Bruchgleichung muss auch bei der Bruchungleichung zunächst die Definitionsmenge von $x$ bestimmt werden. Der Nenner eines Bruches darf niemals $0$ ergeben. Eine Division durch $0$ ist mathematisch nämlich nicht erlaubt. Das heißt, die Variable $x$ darf alle Werte annehmen mit Ausnahme der Zahlen, die dazu führen würden, dass der Nenner des Bruches $0$ ergeben würde. Um die Definitionsmenge zu bestimmen, setzen wir also den Nenner des Bruches gleich $0$ und stellen dann nach $x$ um:

$x-5 = 0~~~~|+5$

$x = 5$

Die Variable $x$ darf somit alle Werte annehmen mit Ausnahme der Zahl $5$.

$ \mathbb{D} = \mathbb{R} \setminus \{5\} $

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Lösen einer Bruchungleichung

$\frac{x+2}{x-5} > 0$

Das Ergebnis des Bruchterms muss laut der Ungleichung größer als $0$ sein. Bevor wir nun damit beginnen die Gleichung mit Hilfe von Äquivalenzumformungen zu lösen, müssen wir uns zunächst überlegen, unter welchen Bedingungen das Ergebnis des Bruchterms größer als null ist.

1. Fall: Zähler und Nenner sind größer als $0$

Sind Zähler und Nenner beide positiv, so ist auch das Ergebnis des Bruchterms positiv. Mathematisch bedeutet das folgendes:

$x+2 > 0~~~~~$und$~~~~~x-5 > 0$

Merke

Bei Bruchungleichungen werden Zähler und Nenner separat betrachtet.

Wir erhalten also je eine lineare Ungleichung für den Zähler und den Nenner. Lösen wir diese Ungleichungen weiter auf, erhalten wir:

$x+2 > 0~~~ \leftrightarrow ~~~x > - 2$

$x-5 > 0 ~~~\leftrightarrow ~~~x > 5$

Die Variable $x$ muss also größer als $-2$ und größer als $5$ sein. Diese Bedingung erfüllen alle Zahlen, die größer als $5$ sind. Zahlen, die größer als $-2$, aber kleiner als $5$ sind, zählen nicht zur Lösung.

$x > 5$

Dieses Ergebnis ist jedoch nur ein Teil der Lösung. Das Ergebnis des Bruchterms ist nämlich auch dann positiv, wenn sowohl der Zähler als auch der Nenner des Bruches negativ ist. Zum Lösen der Bruchungleichung müssen wir also noch einen weiteren Fall betrachten.

2. Fall: Zähler und Nenner sind kleiner als $0$

Das Ergebnis des Bruchterms ist auch dann positiv, wenn sowohl der Zähler als auch der Nenner des Bruchterms negativ ist. (Du erinnerst dich bestimmt daran, dass die Division zweier negativer Zahlen zu einem positiven Ergebnis führt.)

Gut zu wissen

$\frac{-a}{-b} > 0$

Zähler und Nenner werden wieder in zwei unterschiedlichen Ungleichungen betrachtet:

$x+2 < 0~~~ \leftrightarrow ~~~x < - 2$

$x-5 < 0~~~ \leftrightarrow ~~~x < 5$

Die Variable $x$ muss kleiner als $-2$ und kleiner als $5$ sein. Auch diese Aussage schließt die Zahlen zwischen $-2$ und $5$ aus.

$x < -2 $

Tragen wir beide Ergebnisse für $x$ zusammen, erhalten wir folgende Lösungsmenge:

$\mathbb{L} = \{x<-2; x>5 \}$

Die Variable $x$ muss entweder kleiner als $-2$ oder größer als $5$ sein.

Die Variable $x$ darf laut Definitionsmenge den Wert $5$ nicht annehmen. Da dieser Wert in der Lösungsmenge nicht enthalten ist, ist die Bruchungleichung richtig gelöst.

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welche Werte kann $x$ laut dieser Lösungsmenge $nicht$ annehmen?

$\mathbb{L} =\{x<-2; x>9\}$

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Bitte die richtigen Aussagen auswählen.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welchen Wert kann x laut dieser Lösungsmenge nicht annehmen?

$\mathbb{L} =\{x<-1; x>10\}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lautet die Definitionsmenge dieser Bruchungleichung?

$\frac{x+5}{x-5}>0$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7871